Global Ecology and Biogeography最新文献

筛选
英文 中文
Land-Use Impacts on Plant Functional Diversity Throughout Europe 全欧洲土地利用对植物功能多样性的影响
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-12-13 DOI: 10.1111/geb.13947
Francesca Rosa, Peter M. van Bodegom, Stefanie Hellweg, Stephan Pfister, Idoia Biurrun, Steffen Boch, Milan Chytrý, Renata Ćušterevska, Michele Dalle Fratte, Gabriella Damasceno, Emmanuel Garbolino, Jonathan Lenoir, Wim A. Ozinga, Josep Penuelas, Francesco Maria Sabatini, Franziska Schrodt, Domas Uogintas, Chaeho Byun, Jiri Dolezal, Tetiana Dziuba, Bruno Hérault, Irene Martín-Forés, Ülo Niinemets, Gwendolyn Peyre, Laura Scherer
{"title":"Land-Use Impacts on Plant Functional Diversity Throughout Europe","authors":"Francesca Rosa, Peter M. van Bodegom, Stefanie Hellweg, Stephan Pfister, Idoia Biurrun, Steffen Boch, Milan Chytrý, Renata Ćušterevska, Michele Dalle Fratte, Gabriella Damasceno, Emmanuel Garbolino, Jonathan Lenoir, Wim A. Ozinga, Josep Penuelas, Francesco Maria Sabatini, Franziska Schrodt, Domas Uogintas, Chaeho Byun, Jiri Dolezal, Tetiana Dziuba, Bruno Hérault, Irene Martín-Forés, Ülo Niinemets, Gwendolyn Peyre, Laura Scherer","doi":"10.1111/geb.13947","DOIUrl":"10.1111/geb.13947","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Global biodiversity loss resulting from anthropogenic land-use activities is a pressing concern, requiring precise assessments of impacts at large spatial extents. Existing models mainly focus on species richness and abundance, lacking insights into ecological mechanisms and species' roles in ecosystem functioning. To bridge this gap, we conducted an extensive analysis of the impact of human land use on vascular plant functional diversity across diverse land-use classes and bioregions in Europe, comparing it to traditional metrics.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Europe.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1992–2019.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Vascular plants.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Integrating extensive databases of vegetation plots with spatial data on land use and land cover, we paired plots from areas actively used and modified by humans with plots from natural habitats under similar environmental conditions. Using species occurrences and traits, in each plot we computed three complementary functional diversity metrics (functional richness, evenness and divergence), species richness and abundance. We assessed the impact of land use by comparing the metrics in the paired plots.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Our findings revealed that, compared to natural habitats, anthropogenic land use exhibits lower functional richness and divergence but higher functional evenness across most land-use classes and bioregions. The response of functional richness was more marked than the other two metrics and especially pronounced in croplands and urban areas and in northern bioregions. Functional richness exhibited a pattern that did not fully overlap with the trend in species richness, providing useful complementary information.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>We provide a large-scale precise assessment of anthropogenic land-use impacts on functional diversity across Europe. Our findings indicate that: (i) human disturbance significantly alters plant functional diversity compared to natural habitats; (ii) this alteration goes in the direction of functional homogenisation within sites; (iii) functional diversit","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13947","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental and Spatial Effects on Co-Occurrence Network Size and Taxonomic Similarity in Stream Diatoms, Insects and Fish 环境和空间对水系硅藻、昆虫和鱼类共现网络大小和分类相似性的影响
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-12-09 DOI: 10.1111/geb.13935
Joseph L. Mruzek, William R. Budnick, Chad A. Larson, Sophia I. Passy
{"title":"Environmental and Spatial Effects on Co-Occurrence Network Size and Taxonomic Similarity in Stream Diatoms, Insects and Fish","authors":"Joseph L. Mruzek,&nbsp;William R. Budnick,&nbsp;Chad A. Larson,&nbsp;Sophia I. Passy","doi":"10.1111/geb.13935","DOIUrl":"10.1111/geb.13935","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The influences of environmental and spatial processes on species composition have been at the center of metacommunity ecology. Conversely, the relative importance of these processes for species co-occurrences and taxonomic similarity has remained poorly understood. We hypothesised that at a subcontinental scale, shared environmental preference would be the major driver of co-occurrences across species groups. In contrast, co-occurrences due to shared dispersal history were more likely in dispersal-limited taxa. Finally, we tested whether taxa co-occurring due to similar responses to environmental and spatial processes were more taxonomically similar than expected by chance.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>The conterminous United States.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1993–2019.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Stream diatoms, insects and fish.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We generated co-occurrence networks and developed methodology to determine the proportions of nodes and edges explained by pure environment alone (after accounting for space), pure space alone (after accounting for the environment), pure environment and pure space together, and spatially structured environment. Taxonomic similarity of taxa co-occurring because of environmental and/or spatial controls or because of unmeasured processes was compared to that of a null model.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Pure environment alone, spatially structured environment, and pure environment and pure space together explained the greatest proportion of nodes and edges in the co-occurrence networks of diatom species and genera, and insect genera. Conversely, pure environment and pure space together best explained the nodes and edges in the co-occurrence network of fish species and genera. Co-occurring taxa were more closely related than the random expectation in all comparisons.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>The environment controlled co-occurrences in all groups, while the influence of space was the strongest in fish, the most dispersal-limited group in our study. All co-occurring taxa were more taxonomically related than expected by chance due to environmental or spatial overlap or unaccounted factors.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the Universal Spatial Properties of Coral Reefs 揭示珊瑚礁的普遍空间特性
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-12-02 DOI: 10.1111/geb.13939
Àlex Giménez-Romero, Manuel A. Matías, Carlos M. Duarte
{"title":"Unravelling the Universal Spatial Properties of Coral Reefs","authors":"Àlex Giménez-Romero,&nbsp;Manuel A. Matías,&nbsp;Carlos M. Duarte","doi":"10.1111/geb.13939","DOIUrl":"10.1111/geb.13939","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;To characterise the size and geometry of coral reefs on a global scale.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Global.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Present.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Coral reefs.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We process the Allen Coral Atlas database of shallow-water tropical reefs to obtain a comprehensive and unprecedented inventory of coral reefs worldwide. We analyse different macroecological and morphological patterns, including size distribution, the area-perimeter relationship, inter-reef distance distribution, and the fractal dimension of individual reefs and coral provinces.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We identified a total of 1,579,772 individual reefs worldwide (&gt; 1000 m&lt;sup&gt;2&lt;/sup&gt;), extending over a total of 52,423 km&lt;sup&gt;2&lt;/sup&gt; of ocean area with mean and median sizes of 3.32 and 0.3 ha, respectively. We unravelled three universal laws that are common to all coral reef provinces: the size-frequency distribution and the inter-reef distance distribution follow power laws with an exponent of 1.8 and 2.33, respectively. At the same time, the area-perimeter relationship conforms to a power-law with an exponent of 1.26. Furthermore, we demonstrate that coral reefs develop fractal patterns characterised by a perimeter fractal dimension of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1.3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {D}_P=1.3 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and a surface fractal dimension of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1.6&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {D}_A=1.6 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Our analysis suggests that coral reefs","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking Global Hotspots for Threatened Terrestrial Vertebrates 重新思考濒危陆生脊椎动物的全球热点
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-11-27 DOI: 10.1111/geb.13942
Pablo Yair Huais, Luis Osorio-Olvera, Javier Maximiliano Cordier, Ana N. Tomba, Jorge Soberón, Rafael Loyola, Javier Nori
{"title":"Rethinking Global Hotspots for Threatened Terrestrial Vertebrates","authors":"Pablo Yair Huais,&nbsp;Luis Osorio-Olvera,&nbsp;Javier Maximiliano Cordier,&nbsp;Ana N. Tomba,&nbsp;Jorge Soberón,&nbsp;Rafael Loyola,&nbsp;Javier Nori","doi":"10.1111/geb.13942","DOIUrl":"10.1111/geb.13942","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>We aimed to delimit hotspots for terrestrial threatened vertebrate species (HTV) through novel macroecological and statistical approaches.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>Present day (1979–2024).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Terrestrial threatened vertebrate species (<i>n</i> = 7188).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>In comparison with previous delimitations of hotspots, we: (i) considered richness and degree of endemism together through a robust statistical framework; (ii) focused on a priority set of species extremely important in terms of conservation, based on IUCN threat status; and (iii) used a fine spatial scale which allowed us to define key sub-areas within classic hotspots. We also assessed the degree of protection and human impact within the proposed HTV.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We propose 20 global hotspots for threatened terrestrial vertebrates. In comparison with classic hotspots, proposed HTV have a significantly more limited distribution, covering ~27% of classic hotspots' area. In addition, a large proportion of HTV (~27%) does not match with classic hotspots. The overlap between HTV and protected areas (PAs) is low (&lt; 11%), and extremely low when only strict protected areas are considered (&lt; 1.5%). Also, a great degree of HTV exhibits high to extreme levels of human modification. On average, the velocity of climate change within HTV has been low, but attention must be given to notable areas presenting medium to high velocities. Interestingly, the geographical locations of highly endemic and rich areas considerably varied across individual vertebrate taxa. Yet, a high proportion of these priority areas for individual taxa are covered by the proposed HTV (74%–89%).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our findings present key areas of the world for threatened terrestrial vertebrate species, many of these at high risk due to an interplay among low levels of protection, extreme levels of human modification and climate change. The proposed HTV are highly relevant in terms of decision-making, serving as a guide for allocating the limited conservation resources.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns 细粒度预测是准确呈现大陆尺度生物多样性模式的关键
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-11-22 DOI: 10.1111/geb.13934
Jeremy M. Cohen, Walter Jetz
{"title":"Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns","authors":"Jeremy M. Cohen,&nbsp;Walter Jetz","doi":"10.1111/geb.13934","DOIUrl":"10.1111/geb.13934","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;As global change accelerates, accurate predictions of species distributions and biodiversity patterns are critical to limit biodiversity loss. Numerous studies have found that coarse-grain species distribution models (SDMs) perform poorly relative to fine-grain models because they mismatch environmental information with observations. However, it remains unclear how grain-size biases vary in intensity across space and time, possibly generating inaccurate predictions for specific regions, seasons or species. For example, coarse-grain biases may intensify in patchy, discontinuous landscapes. Such biases may accumulate to produce highly misleading estimates of continental and seasonal biodiversity patterns.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;United States and Canada.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;2004–2021.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Birds (Aves).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We fit presence-absence SDMs characterising the summer and winter distributions of 572 bird species native to the US and Canada across five spatial grains from 1 to 50 km, using observations from the eBird citizen science initiative. We combined these predictions to generate seasonal biodiversity estimates across the US and Canada, which we validated using observations from 322 independent sites.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We find that in both seasons, 1 km models more accurately predicted species presence, absence and richness at local sites. Coarse-grain models (even at 3 km) consistently under-predicted range area, potentially missing important habitat. This bias intensified during summer (83%–86% of species) when many birds have smaller ‘operational scales’ via localised home ranges while breeding. Biases were greatest in desert regions with patchier habitat and for range-restricted and habitat-specialist species. Predictions based on coarse-grain models overpredicted avian diversity in the west and underpredicted it in the great plains, prairie pothole region and boreal zones.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We demonstrate that coarse-grain models can bias seasonal and continental estimates of biodiversity patterns across space and time and that grain-related biases intensify during summer and in patchier landscapes, especially for range-restricted and habitat speciali","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology Models 热强迫还是寒冷?春季物候模型中温度控制的错误规范
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-28 DOI: 10.1111/geb.13932
Xiaojie Gao, Andrew D. Richardson, Mark A. Friedl, Minkyu Moon, Josh M. Gray
{"title":"Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology Models","authors":"Xiaojie Gao,&nbsp;Andrew D. Richardson,&nbsp;Mark A. Friedl,&nbsp;Minkyu Moon,&nbsp;Josh M. Gray","doi":"10.1111/geb.13932","DOIUrl":"10.1111/geb.13932","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Climate-change-induced shifts in the timing of leaf emergence during spring have been widely documented and have important ecological consequences. However, mechanistic knowledge regarding what controls the timing of spring leaf emergence is incomplete. Field-based studies under natural conditions suggest that climate-warming-induced decreases in cold temperature accumulation (chilling) have expanded the dormancy duration or reduced the sensitivity of plants to warming temperatures (thermal forcing) during spring, thereby slowing the rate at which the timing of leaf emergence is shifting earlier in response to ongoing climate change. However, recent studies have argued that the apparent reductions in temperature sensitivity may arise from artefacts in the way that temperature sensitivity is calculated, while other studies based on statistical and mechanistic models specifically designed to quantify the role of chilling have shown conflicting results.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We analysed four commonly used combinations of phenology and temperature datasets obtained from remote sensing and ground observations to elucidate whether current model-based approaches robustly quantify how chilling, in concert with thermal forcing, controls the timing of leaf emergence during spring under current climate conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We show that widely used modeling approaches that are calibrated using field-based observations misspecify the role of chilling under current climate conditions as a result of statistical artefacts inherent to the way that chilling is parameterised. Our results highlight the limitations of existing modelling approaches and observational data in quantifying how chilling affects the timing of spring leaf emergence and suggest that decreasing chilling arising from climate warming may not constrain near-future shifts towards earlier leaf emergence in extra-tropical ecosystems worldwide.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Landscape Conversion Impact on Small Mammal Occurrence and the Transmission of Parasites in the Atlantic Forest 预测景观改造对大西洋森林小型哺乳动物出现和寄生虫传播的影响
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-27 DOI: 10.1111/geb.13933
Ana Paula L. Costa, Gisele R. Winck, Bernardo R. Teixeira, Rosana Gentile, Paulo S. D'Andrea, Emerson M. Vieira, Renata Pardini, Thomas Püttker, Cecilia S. Andreazzi
{"title":"Predicting Landscape Conversion Impact on Small Mammal Occurrence and the Transmission of Parasites in the Atlantic Forest","authors":"Ana Paula L. Costa,&nbsp;Gisele R. Winck,&nbsp;Bernardo R. Teixeira,&nbsp;Rosana Gentile,&nbsp;Paulo S. D'Andrea,&nbsp;Emerson M. Vieira,&nbsp;Renata Pardini,&nbsp;Thomas Püttker,&nbsp;Cecilia S. Andreazzi","doi":"10.1111/geb.13933","DOIUrl":"10.1111/geb.13933","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Changes in landscape configuration significantly impact ecosystems and the services they provide, including disease regulation for both humans and wildlife. Land use conversion usually favors disturbed-adapted species, which are often known reservoirs of zoonotic parasites, thereby potentially escalating spillover events (i.e., the transmission of parasites to new hosts, including humans). Here we aimed to investigate how alterations in landscape use and configuration influence the distribution and co-occurrence of potential hosts of zoonotic and epizootic parasites.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Brazilian Atlantic Forest.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Data collection spanned from 1997 to 2019.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;Major taxa studied small mammals.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We integrated ecological network metrics and joint distribution models while accounting for phylogenetic relationships and functional traits to answer two main questions: (1) do small mammal species considered central hosts in the transmission of parasites exhibit a higher probability of occurrence in landscapes with reduced native vegetation areas? (2) Do small mammal hosts that share a higher number of parasites have higher co-occurrence probabilities?&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Our results demonstrated that species identified as significant hosts in our centrality network analysis displayed an increased probability of occurrence in landscapes that are both more fragmented and have a higher proportion of farming areas, hence fewer native vegetation areas. Regarding the relationship between species co-occurrence and parasite sharing, our findings indicated that most strong co-occurrences were prevalent within groups with higher parasite fauna similarity, but not all species sharing parasites had a higher probability of co-occurring.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Here we highlight the effects of landscape conversion on small mammal species, including how different configurations of land use can influence both central and non-central host occurrences. Besides, our results also indicate that parasite transmission may be overestimated when the co-occurrence probability of potential host species is not considered. We highly recommend incor","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Variation in Upper Limits of Coral Cover on the Great Barrier Reef 大堡礁珊瑚覆盖上限的空间变化
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-26 DOI: 10.1111/geb.13928
Mariana Álvarez-Noriega, Juan C. Ortiz, Daniela M. Ceccarelli, Michael J. Emslie, Katharina E. Fabricius, Michelle J. Jonker, Marji Puotinen, Barbara J. Robson, Chris M. Roelfsema, Tane H. Sinclair-Taylor, Renata Ferrari
{"title":"Spatial Variation in Upper Limits of Coral Cover on the Great Barrier Reef","authors":"Mariana Álvarez-Noriega,&nbsp;Juan C. Ortiz,&nbsp;Daniela M. Ceccarelli,&nbsp;Michael J. Emslie,&nbsp;Katharina E. Fabricius,&nbsp;Michelle J. Jonker,&nbsp;Marji Puotinen,&nbsp;Barbara J. Robson,&nbsp;Chris M. Roelfsema,&nbsp;Tane H. Sinclair-Taylor,&nbsp;Renata Ferrari","doi":"10.1111/geb.13928","DOIUrl":"10.1111/geb.13928","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Identifying the maximum coral cover that a coral community can sustain (i.e., its ‘upper limit’) is important for predicting community dynamics and improving management strategies. Here, we quantify the relationship between estimated upper limits and key environmental factors on coral reefs: hard substrate availability, temperature and water clarity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Great Barrier Reef (GBR), Australia (over 1400 km).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1990 to 2022.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Scleractinian corals.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We used 32 years of data on coral cover around reef perimeters. Each reef was divided into four wave-exposure habitats depending on prevailing wind conditions. For each site, we determined if hard coral cover had reached a plateau or upper limit. Next, we extracted existing estimates of hard substrate availability, modelled water temperature and Secchi depth. Then, we quantified the relationship between these environmental variables and the upper limits.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found varying upper limits across the GBR, with a median of 33% coral cover and only 17% of the estimated upper limits exceeded 50% coral cover. Upper limits increased towards the southern reefs. Our results show that upper limits increased with increasing hard substrate availability and decreased with temperature and, to a lesser extent, with water clarity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>The upper limits estimated in this study are much lower than what is commonly assumed when modelling ecological dynamics, most likely resulting in predicted recovery rates being inappropriately high. Although hard substrate ultimately restricted upper limits, there are mechanisms constraining the proportion of hard substrate that is covered by hard corals. The negative relationship between temperature and upper limits cannot be explained by changes in macroalgal abundance but may be related to changes in species composition. The quantitative relationships between the upper limits of coral cover and environmental variables will provide critical information to prioritise sites for management interventions.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological but Not Biological Traits of European Riverine Invertebrates Respond Consistently to Anthropogenic Impacts 欧洲沿河无脊椎动物的生态特征而非生物特征对人类活动影响的反应一致
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-26 DOI: 10.1111/geb.13931
James S. Sinclair, Rachel Stubbington, Ralf B. Schäfer, Libuše Barešová, Núria Bonada, Zoltán Csabai, J. Iwan Jones, Aitor Larrañaga, John F. Murphy, Petr Pařil, Marek Polášek, Jes J. Rasmussen, Michal Straka, Gábor Várbíró, Ralf C. M. Verdonschot, Ellen A. R. Welti, Peter Haase
{"title":"Ecological but Not Biological Traits of European Riverine Invertebrates Respond Consistently to Anthropogenic Impacts","authors":"James S. Sinclair,&nbsp;Rachel Stubbington,&nbsp;Ralf B. Schäfer,&nbsp;Libuše Barešová,&nbsp;Núria Bonada,&nbsp;Zoltán Csabai,&nbsp;J. Iwan Jones,&nbsp;Aitor Larrañaga,&nbsp;John F. Murphy,&nbsp;Petr Pařil,&nbsp;Marek Polášek,&nbsp;Jes J. Rasmussen,&nbsp;Michal Straka,&nbsp;Gábor Várbíró,&nbsp;Ralf C. M. Verdonschot,&nbsp;Ellen A. R. Welti,&nbsp;Peter Haase","doi":"10.1111/geb.13931","DOIUrl":"10.1111/geb.13931","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>To determine which riverine invertebrate traits respond consistently to anthropogenic impacts across multiple biogeographic regions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Europe.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1981–2021.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Riverine invertebrates.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We compiled a database of riverine invertebrate community time series for 673 sites across six European countries spanning six freshwater ecoregions. We compared trait responses to anthropogenic impacts (quantified as changes in ‘ecological quality’) among regions for seven ‘ecological’ traits, which reflect habitat preferences, and nine ‘biological’ traits (e.g., morphology or life history), which represent taxon-specific attributes that can influence ecosystem processes.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Four ecological traits (current, microhabitat, salinity and trophic preferences) and one biological trait (dispersal mode) responded consistently across regions. These responses were primarily driven by spatial differences among poorer to better quality sites. Responses to temporal changes in quality were comparable but less pronounced.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Consistent responses to anthropogenic impacts across multiple ecological traits indicate these traits may improve broader scale measurements, comparisons and predictions of community responses. However, we could not use ecological traits to identify the actions of specific stressors because multiple traits always responded as a group. Inconsistent responses across almost all biological traits indicated that these traits may be less predictive of impacts across regions. Predictions of how biological traits, and associated ecosystem processes, respond to anthropogenic impacts may be most effective at regional scales where responses are more consistent.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13931","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AVOTREX: A Global Dataset of Extinct Birds and Their Traits AVOTREX:已灭绝鸟类及其特征的全球数据集
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-24 DOI: 10.1111/geb.13927
Ferran Sayol, Joseph P. Wayman, Paul Dufour, Thomas E. Martin, Julian P. Hume, Maria Wagner Jørgensen, Natàlia Martínez-Rubio, Ariadna Sanglas, Filipa C. Soares, Rob Cooke, Chase D. Mendenhall, Jay R. Margolis, Juan Carlos Illera, Rhys Lemoine, Eva Benavides, Oriol Lapiedra, Kostas A. Triantis, Alex L. Pigot, Joseph A. Tobias, Søren Faurby, Thomas J. Matthews
{"title":"AVOTREX: A Global Dataset of Extinct Birds and Their Traits","authors":"Ferran Sayol,&nbsp;Joseph P. Wayman,&nbsp;Paul Dufour,&nbsp;Thomas E. Martin,&nbsp;Julian P. Hume,&nbsp;Maria Wagner Jørgensen,&nbsp;Natàlia Martínez-Rubio,&nbsp;Ariadna Sanglas,&nbsp;Filipa C. Soares,&nbsp;Rob Cooke,&nbsp;Chase D. Mendenhall,&nbsp;Jay R. Margolis,&nbsp;Juan Carlos Illera,&nbsp;Rhys Lemoine,&nbsp;Eva Benavides,&nbsp;Oriol Lapiedra,&nbsp;Kostas A. Triantis,&nbsp;Alex L. Pigot,&nbsp;Joseph A. Tobias,&nbsp;Søren Faurby,&nbsp;Thomas J. Matthews","doi":"10.1111/geb.13927","DOIUrl":"10.1111/geb.13927","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Motivation</h3>\u0000 \u0000 <p>Human activities have been reshaping the natural world for tens of thousands of years, leading to the extinction of hundreds of bird species. Past research has provided evidence of extinction selectivity towards certain groups of species, but trait information is lacking for the majority of clades, especially for prehistoric extinctions identified only through subfossil remains. This incomplete knowledge potentially obscures the structure of natural communities, undermining our ability to infer changes in biodiversity across space and time, including trends in functional and phylogenetic diversity. Biases in currently available trait data also limit our ability to identify drivers and processes of extinction. Here we present AVOTREX, an open-access database of species traits for all birds known to have gone extinct in the last 130,000 years. This database provides detailed morphological information for 610 extinct species, along with a pipeline to build phylogenetic trees that include these extinct species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Types of Variables Contained</h3>\u0000 \u0000 <p>For each extinct bird species, we provide information on the taxonomy, geographic location, and period of extinction. We also present data on island endemicity, flight ability, and body mass, as well as standard measurements of external (matching the AVONET database of extant birds) and skeletal morphology from museum specimens where available. To ensure comprehensive morphological data coverage, we estimate all missing morphological measurements using a data imputation technique based on machine learning. Finally, we provide an R package to graft all extinct species onto a global phylogeny of extant species (BirdTree).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Spatial Location and Grain</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period and Grain</h3>\u0000 \u0000 <p>All known globally extinct bird species from 130,000 years ago up until 2024.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa and Level of Measurement</h3>\u0000 \u0000 <p>Birds (Class Aves), species level.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Software Format</h3>\u0000 \u0000 <p>Spreadsheets (.csv) stored in Dryad.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信