Bartłomiej Surmacz, Patricia María Rodríguez González, Roland Jansson, Tomasz Suchan, Remigiusz Pielech
{"title":"Global-Scale Analysis Reveals Importance of Environment and Species Traits in Spatial Patterns of Riparian Plants' Genetic Diversity","authors":"Bartłomiej Surmacz, Patricia María Rodríguez González, Roland Jansson, Tomasz Suchan, Remigiusz Pielech","doi":"10.1111/geb.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>In riparian zones along rivers, plant demography is shaped by hydrologic disturbances, the dendritic structure of the river networks, and asymmetric gene flow due to the prevalence of unidirectional dispersal by hydrochory. Downstream-biased dispersal may lead to the accumulation of genetic diversity in populations situated lower within the catchment area—a phenomenon referred to as ‘downstream increase in intraspecific genetic diversity’ (DIGD). Our study aimed to test if the presence of this pattern in riparian plants depends on the species traits, sampling design and ecosystem integrity.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Riparian zones along rivers worldwide.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>1978–2023.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Vascular plants.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We conducted meta-analysis of population genetic studies on riparian plants to identify the factors linked to the occurrence of the DIGD pattern. We modelled the correlation between position along rivers and population genetic diversity using a dataset consisting of variables extracted from the studies, supplemented by data from plant trait databases.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found no evidence for a general trend in plant genetic diversity along rivers, but species traits and environmental factors partially explained the patterns. A downstream increase in genetic diversity was more likely to be found in species capable of hydrochoric dispersal and along the unmodified rivers which maintain habitat continuity.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Our study highlights that different patterns of genetic diversity can be linked to species traits or different levels of habitat fragmentation. Population genetic studies of riparian plants have frequently investigated patterns of genetic diversity in remnant populations in degraded riparian habitats. Although such investigations are important, more population studies of common plants in well-preserved riparian zones are needed, as these can help understanding the general mechanisms that control natural population dynamics of plant species.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.70010","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
In riparian zones along rivers, plant demography is shaped by hydrologic disturbances, the dendritic structure of the river networks, and asymmetric gene flow due to the prevalence of unidirectional dispersal by hydrochory. Downstream-biased dispersal may lead to the accumulation of genetic diversity in populations situated lower within the catchment area—a phenomenon referred to as ‘downstream increase in intraspecific genetic diversity’ (DIGD). Our study aimed to test if the presence of this pattern in riparian plants depends on the species traits, sampling design and ecosystem integrity.
Location
Riparian zones along rivers worldwide.
Time Period
1978–2023.
Major Taxa Studied
Vascular plants.
Methods
We conducted meta-analysis of population genetic studies on riparian plants to identify the factors linked to the occurrence of the DIGD pattern. We modelled the correlation between position along rivers and population genetic diversity using a dataset consisting of variables extracted from the studies, supplemented by data from plant trait databases.
Results
We found no evidence for a general trend in plant genetic diversity along rivers, but species traits and environmental factors partially explained the patterns. A downstream increase in genetic diversity was more likely to be found in species capable of hydrochoric dispersal and along the unmodified rivers which maintain habitat continuity.
Main Conclusions
Our study highlights that different patterns of genetic diversity can be linked to species traits or different levels of habitat fragmentation. Population genetic studies of riparian plants have frequently investigated patterns of genetic diversity in remnant populations in degraded riparian habitats. Although such investigations are important, more population studies of common plants in well-preserved riparian zones are needed, as these can help understanding the general mechanisms that control natural population dynamics of plant species.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.