Julián Tijerín-Triviño, Emily R. Lines, Miguel A. Zavala, Mariano García, Julen Astigarraga, Verónica Cruz-Alonso, Jonas Dahlgren, Paloma Ruiz-Benito
{"title":"Forest Productivity Decreases in Response to Recent Changes in Vegetation Structure and Climate in the Latitudinal Extremes of the European Continent","authors":"Julián Tijerín-Triviño, Emily R. Lines, Miguel A. Zavala, Mariano García, Julen Astigarraga, Verónica Cruz-Alonso, Jonas Dahlgren, Paloma Ruiz-Benito","doi":"10.1111/geb.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Climate change is driving increasingly frequent and intense extreme climatic events, pushing many forests worldwide beyond their physiological thresholds. Despite the major role played by forests in the global carbon cycle, climate change threatens the future potential for carbon sequestration in forests. Hence, studies of recent changes in stand productivity and the underlying drivers over large areas are critical to understand and assess the forest carbon sink. We aimed to describe recent changes in forest productivity in the latitudinal extremes of the European continent and the role of climate and climate change in driving these patterns.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Latitudinal extremes of the European continent (Spain and Sweden).</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>From 1980s to the present.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Trees.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We analysed data from > 13,900 plots in Mediterranean, temperate and boreal regions using three consecutive surveys from the Spanish and Swedish National Forest Inventories (NFI). Generalised linear models were parameterised to assess how forest structure, climate and climatic anomalies (mean temperature, annual precipitation, drought, heatwaves) influenced forest productivity across two time periods.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Despite increases in stand basal area, forest productivity declined over time. The effects of recent climate change intensified, with temperature anomalies increasingly and negatively impacting productivity in most regions. Region-specific effects were observed: Heatwaves and reduced precipitation in the Mediterranean, intensified droughts in temperate regions and increased precipitation in boreal areas further influenced productivity dynamics.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Our results showed a marked decrease in forest productivity due to climatic warming over time and a differential sensitivity to extreme climatic events across regions, which will affect multiple dependent ecosystem functions. Our findings provide further evidence that altered forest productivity due to climate change may hinder the carbon sink capacity of European forests.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.70011","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
Climate change is driving increasingly frequent and intense extreme climatic events, pushing many forests worldwide beyond their physiological thresholds. Despite the major role played by forests in the global carbon cycle, climate change threatens the future potential for carbon sequestration in forests. Hence, studies of recent changes in stand productivity and the underlying drivers over large areas are critical to understand and assess the forest carbon sink. We aimed to describe recent changes in forest productivity in the latitudinal extremes of the European continent and the role of climate and climate change in driving these patterns.
Location
Latitudinal extremes of the European continent (Spain and Sweden).
Time Period
From 1980s to the present.
Major Taxa Studied
Trees.
Methods
We analysed data from > 13,900 plots in Mediterranean, temperate and boreal regions using three consecutive surveys from the Spanish and Swedish National Forest Inventories (NFI). Generalised linear models were parameterised to assess how forest structure, climate and climatic anomalies (mean temperature, annual precipitation, drought, heatwaves) influenced forest productivity across two time periods.
Results
Despite increases in stand basal area, forest productivity declined over time. The effects of recent climate change intensified, with temperature anomalies increasingly and negatively impacting productivity in most regions. Region-specific effects were observed: Heatwaves and reduced precipitation in the Mediterranean, intensified droughts in temperate regions and increased precipitation in boreal areas further influenced productivity dynamics.
Main Conclusions
Our results showed a marked decrease in forest productivity due to climatic warming over time and a differential sensitivity to extreme climatic events across regions, which will affect multiple dependent ecosystem functions. Our findings provide further evidence that altered forest productivity due to climate change may hinder the carbon sink capacity of European forests.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.