Susana Pallarés, Stefano Mammola, David Sánchez-Fernández
{"title":"Adapted Yet at Risk: The Paradox of Thermotolerant Species in a Warming World","authors":"Susana Pallarés, Stefano Mammola, David Sánchez-Fernández","doi":"10.1111/gcb.70500","DOIUrl":"https://doi.org/10.1111/gcb.70500","url":null,"abstract":"<p>Assessing the persistence capacity of poor-dispersal species under climate change requires integrating knowledge of both physiological sensitivity (e.g., thermal tolerance metrics) and projected climatic exposure. While warm-adapted species in climatically buffered habitats could persist longer, and heat-sensitive species in rapidly warming regions might face higher extinction risk, such a simplistic dichotomy of “winners” and “losers” often fails to reflect the complexity of real-world systems. Drawing on recent literature on ectotherm thermal tolerance, we argue here that thermotolerant species generally inhabit regions with historically high thermal variability, where intense climatic shifts are often projected. This leads to a paradox where heat-tolerant species are experiencing similar or even higher climate stress than heat-sensitive ones. In addition, multiple methodological challenges in estimating thermal limits, accounting for behavioral, physiological, and evolutionary capacities, and predicting exposure to novel climatic conditions complicate assessments of persistence capacity. We advocate for a shift toward more mechanistic methodological frameworks for assessing thermal tolerance, and for the incorporation of climatic variability at biologically relevant spatial and temporal scales, thereby enabling more accurate forecasts of species' responses to climate change. Such a refined approach is essential to inform effective climate-adaptive biodiversity conservation strategies, especially for taxa with limited capacity to track shifting climates.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145111305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Almagro, Darío Martin-Benito, Sergio Rossi, María Conde, Laura Fernández-de-Uña, Guillermo Gea-Izquierdo
{"title":"Long-Term Cambial Phenology Reveals Diverging Growth Responses of Two Tree Species in a Mixed Forest Under Climate Change","authors":"David Almagro, Darío Martin-Benito, Sergio Rossi, María Conde, Laura Fernández-de-Uña, Guillermo Gea-Izquierdo","doi":"10.1111/gcb.70503","DOIUrl":"https://doi.org/10.1111/gcb.70503","url":null,"abstract":"<p>The net effect of stress induced by climate change on forest functional dynamics remains uncertain. We monitored the dynamics of wood formation and cambial phenology for 11 consecutive years in two co-occurring tree species with different drought tolerance, <i>Pinus sylvestris</i> and <i>Quercus pyrenaica</i>, providing a unique long-term xylogenesis dataset (2012–2022). To assess the influence of climate on cambial and xylem developmental phases, we analyzed biologically meaningful climatic covariates across different time windows. In pine, late-winter temperatures strongly regulated the onset of cambial reactivation, advancing it 5.5 days per°C of warming, with reactivation occurring between early April and mid-May depending on winter thermal conditions. The onset of cambial reactivation in oaks was influenced both by soil water content and late-winter temperature, although the effect of temperature was weaker and restricted to a narrower time window than in pines. The effect of climate on the end of enlargement was nearly identical in both species, consistent with a turgor-driven regulation: higher maximum temperatures accelerated the process, whereas late-spring precipitation in late spring delayed it. In oaks and pines, the end of wood formation was advanced under hot and dry summers, inducing the early cessation of secondary wall lignification and, thus, reducing the length of xylogenesis. Despite the positive effect of warmer winters on earlier cambial resumption in pines, the duration of the enlargement phase (i.e., radial growth period) remained consistently shorter than in the more drought-tolerant oaks. Yet, the high phenological pasticity of pines to winter temperatures may also increase their growth duration, thereby partially buffering the negative effects of hotter droughts. The long dataset analyzed provided a robust assessment of species-specific phenological plasticity under climate change. Disentangling the net effect of climate on xylogenesis is crucial to understand future growth dynamics in mixed forests where more drought-tolerant species are becoming increasingly dominant.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70503","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145111306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juncheng Li, Nan Wu, Jie Wang, Jinyu Guo, Chris Newman, Qian Qian, Christina D. Buesching, David W. Macdonald, Youbing Zhou
{"title":"Global Drivers of Echolocating Mammal Species Richness","authors":"Juncheng Li, Nan Wu, Jie Wang, Jinyu Guo, Chris Newman, Qian Qian, Christina D. Buesching, David W. Macdonald, Youbing Zhou","doi":"10.1111/gcb.70522","DOIUrl":"https://doi.org/10.1111/gcb.70522","url":null,"abstract":"<div>\u0000 \u0000 <p>Echolocation provides a non-visual perception modality. The extensive diversity of echolocating mammal species is widely distributed across most global regions and latitudes, yet the factors determining their distribution remain unclear. Using Bayesian inference and dimensionality reduction analysis, here we established that mean annual temperature was the most important factor driving the richness of terrestrial echolocating mammal species, while net primary productivity drove non-echolocating mammal species richness. In contrast, in aquatic habitats, species richness for both echolocating and non-echolocating mammals was determined by mean annual sea surface temperature but, interestingly, operated in opposing directions. Further analysis revealed that the species richness pattern for all echolocating mammals was strongly affected by climatic isolation. While global species richness drivers were broadly consistent with biogeographical regions, there were also several regional exceptions. Our findings have important applications for targeting the conservation of echolocators subject to human-induced rapid environmental change.</p>\u0000 </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145111393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongtong Xu, Huiwen Li, Sara Vicca, Daniel S. Goll, David J. Beerling, Qiong Chen, Boyuan Bi, Zhichun Yang, Xing Wang, Zuoqiang Yuan
{"title":"Enhanced Rock Weathering Promotes Soil Organic Carbon Accumulation: A Global Meta-Analysis Based on Experimental Evidence","authors":"Tongtong Xu, Huiwen Li, Sara Vicca, Daniel S. Goll, David J. Beerling, Qiong Chen, Boyuan Bi, Zhichun Yang, Xing Wang, Zuoqiang Yuan","doi":"10.1111/gcb.70483","DOIUrl":"https://doi.org/10.1111/gcb.70483","url":null,"abstract":"<div>\u0000 \u0000 <p>Enhanced rock weathering (ERW) has emerged as a promising carbon dioxide removal (CDR) strategy with the potential to modulate soil carbon sequestration, yet empirical assessments of its impacts remain limited. Here, we address this knowledge gap through a global meta-analysis synthesizing 74 publications. Synthesized results from field experiments showed that crushed rock amendment increased soil organic carbon (SOC), mineral-associated organic carbon, and particulate organic carbon by an average of up to 3.8%, 6.1%, and 7.5%, respectively, with no significant impact on dissolved organic carbon and soil inorganic carbon. SOC accrual was driven by elevated soil exchangeable Ca, increased microbial biomass, and improved soil structure, with local climate regulating these responses. Machine learning simulations of global croplands revealed pronounced site dependency in ERW impacts on SOC, which was positive in low-latitude (warm and humid) regions (40° N–30° S) but negative in high-latitude (cold and dry) regions. Additionally, the effects of ERW on SOC are dose- and duration-dependent. Our simulations indicated that application amounts of 50–500 g m<sup>−2</sup> are optimal for maximizing SOC sequestration, with positive effects diminishing and negative impacts intensifying beyond this range. This empirical synthesis confirms the efficacy of ERW—particularly when Ca-rich silicate rocks in—promoting SOC sequestration and long-term CO<sub>2</sub> sequestration. Maximizing the CDR potential of ERW requires integrating site-specific climatic and edaphic characteristics with optimized application amounts and duration. Our findings provide insights critical for balancing the costs and benefits of rock weathering for CDR and highlight the importance of ERW as a sustainable strategy for soil carbon management and climate change mitigation.</p>\u0000 </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145110914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soil Carbon-to-Nitrogen Ratio Can Predict the Grassland Biodiversity-Productivity Relationship: Evidence From Local, Regional, and Global Scales","authors":"Hongjin Zhang, Lin Jiang, Wei Wang","doi":"10.1111/gcb.70518","DOIUrl":"10.1111/gcb.70518","url":null,"abstract":"<div>\u0000 \u0000 <p>Soil elemental stoichiometry serves as an inherent link between soil biogeochemistry and the structure and processes within plant communities, and thus is at the core of ecosystem functions. Yet, the regulatory role of soil stoichiometry, particularly the carbon-to-nitrogen (C:N) ratio, in shaping biodiversity-productivity relationships remains poorly understood. By integrating data from our regional field surveys (58 sites) and a local complementary N addition experiment in temperate grasslands, together with a global grassland dataset (74 sites), here we showed that plant productivity exhibited a unimodal response to increasing soil C:N ratios, with peaking values at the C:N ratio of approximately 15. At this critical value, the determinants driving grassland productivity undergo a fundamental shift: below the soil C:N of 15, plant diversity was positively related to productivity, while above this threshold, bacterial and fungal diversity showed a positive linkage with plant productivity. This divergence implies a stoichiometric “switch” in biodiversity-productivity relationships: high soil C:N ratios strengthen the reliance of productivity on soil bacterial and fungal diversity to mitigate N deficiency, while low C:N ratios shift the emphasis to plant diversity to exploit resource-rich environments. Our findings highlight that soil stoichiometry can predict biodiversity-productivity relationships, with important implications for grassland restoration and management.</p>\u0000 </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kuiling Zu, Zhiheng Wang, Fusheng Chen, Jonathan Lenoir, Xiangmin Fang, Fangchao Wang, Wensheng Bu, Jianjun Li, Yuan Luo, Yunyun Wang, Wenqi Song
{"title":"Climate-Driven Variability in Flowering Phenology Changes Across Subtropical Mountains: Traits, Elevation Shifts, and Biogeographic Patterns","authors":"Kuiling Zu, Zhiheng Wang, Fusheng Chen, Jonathan Lenoir, Xiangmin Fang, Fangchao Wang, Wensheng Bu, Jianjun Li, Yuan Luo, Yunyun Wang, Wenqi Song","doi":"10.1111/gcb.70516","DOIUrl":"10.1111/gcb.70516","url":null,"abstract":"<div>\u0000 \u0000 <p>Flowering phenology has major impacts on physiological processes, survival, and reproductive success in angiosperms, serving as a critical biological indicator of climate change impacts. However, changes in flowering phenology and their determinants in subtropical montane ecosystems remain poorly quantified at continental extents. Here we investigated the determinants of flowering phenology shifts over the past century across 11 subtropical mountains in China. Based on century-long herbarium collections of 784 flowering plant species in these mountains, we first used linear regression models to assess the magnitude and direction of changes in flowering time for each species in each mountain separately. Then, we investigated the underlying drivers of changes in flowering time, including climate changes, species traits as well as changes in species elevation range size. Our analyses revealed an average advancement in flowering phenology of 3.8 days per decade, though marked regional disparities emerged: flowering times were advanced in southeastern mountains but delayed in southwestern ones. Climate change, species functional traits, and mountain properties all had significant effects on the observed changes in flowering time. Notably, the flowering time of lowland and non-native plants was advanced more than that of alpine and native plants. A key finding was the negative correlation between flowering time changes and elevational range expansions, supporting the hypothesis that phenological plasticity facilitates range adjustments under environmental change. These findings demonstrate that flowering phenological responses are context-dependent, mediated by complex biotic–abiotic interactions. Our study provides the first biogeographical assessment of flowering phenology shifts in subtropical Asian mountains, offering critical insights for predicting ecosystem stability and informing biodiversity conservation strategies under ongoing climate change.</p>\u0000 </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145083895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wang, Juan Tao, Sébastien Brosse, Chunlong Liu, Qiyue Chen, Guangjie Cheng, Jianshuang Tao, Chengzhi Ding
{"title":"Translocated Species Exceed Alien Species in Homogenizing Freshwater Fish Assemblages","authors":"Jie Wang, Juan Tao, Sébastien Brosse, Chunlong Liu, Qiyue Chen, Guangjie Cheng, Jianshuang Tao, Chengzhi Ding","doi":"10.1111/gcb.70506","DOIUrl":"10.1111/gcb.70506","url":null,"abstract":"<div>\u0000 \u0000 <p>Human-driven introductions of nonnative species are accelerating biotic homogenization, threatening the distinctiveness of biota worldwide. However, the patterns and drivers of homogenization caused by nonnatives originating from other ecoregions (alien species) and those originating from the same ecoregion as natives (translocated species) remain highly uncertain across taxonomic, phylogenetic, and functional biodiversity dimensions. This study compared the contributions of alien versus translocated fishes to the homogenization of freshwater fish assemblages, as well as the underlying drivers, in a biodiversity hotspot (Yunnan, China). We first quantified the cumulative beta-diversity changes caused by alien and translocated species across biodiversity dimensions prior to 1960 (P1960), 1980 (P1980), 2000 (P2000), and 2022 (P2022), respectively. We then assessed the influence of anthropogenic disturbance intensity, habitat variability, and the biotic resistance of native fauna on beta-diversity changes. We found an asynchronous pattern of homogenization and differentiation caused by alien and translocated fishes. Alien fishes initially contributed to differentiation, which then shifted to homogenization over time in the taxonomic and functional dimensions, whereas phylogenetic differentiation remained consistent through time. In contrast, translocated fishes consistently drove homogenization across all biodiversity dimensions over time. The cumulative intensity of homogenization caused by translocated fishes was up to four times greater than that induced by alien fishes. Anthropogenic disturbance intensity and habitat variability, along with native biotic resistance, positively contributed to fish assemblage homogenization through both direct and indirect pathways. Our findings reveal that translocated species have caused more pronounced homogenization effects in freshwater fish assemblages. Conservation and management strategies should prioritize the prevention of intra-regional species translocations and the mitigation of anthropogenic disturbances to preserve ecological distinctiveness and integrity.</p>\u0000 </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145084005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalie J. Oram, Nadine Praeg, Richard D. Bardgett, Fiona Brennan, Tancredi Caruso, Paul Illmer, Johannes Ingrisch, Michael Bahn
{"title":"Drought Intensity Shapes Soil Legacy Effects on Grassland Plant and Soil Microbial Communities and Their Responses to Future Drought","authors":"Natalie J. Oram, Nadine Praeg, Richard D. Bardgett, Fiona Brennan, Tancredi Caruso, Paul Illmer, Johannes Ingrisch, Michael Bahn","doi":"10.1111/gcb.70495","DOIUrl":"10.1111/gcb.70495","url":null,"abstract":"<p>Drought can have long-lasting legacy effects on terrestrial ecosystems via persistent shifts in soil microbial community structure and function. Yet, the role drought intensity plays in the formation of soil-mediated drought legacies and in determining plant and microbial responses to subsequent droughts is unknown. Here, we evaluate how soil-mediated drought legacies shaped by the intensity of an initial drought event influence plant and microbial communities in the following year and their response to a subsequent experimental drought. We determined these responses in two model grassland communities with contrasting resource acquisition strategies. We found that the intensity of the initial (i.e., past) drought shaped the composition, network structure and functioning of soil microbial communities, with stronger effects on prokaryotes than fungi. Moreover, drought intensity determined soil-mediated legacy effects on plant responses to a subsequent drought: increasing past drought intensity decreased the drought resistance of the slow-strategy plant community and reduced productivity overshoot in the fast-strategy community after re-wetting. Our findings demonstrate that increasing drought intensity can lead to distinct legacies in soil microbial community composition and function with impacts on plant responses to future droughts.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145079083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xihang Yang, Yong Zhang, Xinyue Zhang, Yuting Wang, Xiang Liu, Mu Liu, Yao Xiao, Jihua Wu
{"title":"Soil Microbiota From Warmer and Drier Grasslands Are More Vulnerable to Drought Stress","authors":"Xihang Yang, Yong Zhang, Xinyue Zhang, Yuting Wang, Xiang Liu, Mu Liu, Yao Xiao, Jihua Wu","doi":"10.1111/gcb.70507","DOIUrl":"10.1111/gcb.70507","url":null,"abstract":"<div>\u0000 \u0000 <p>The stability of soil microbial communities under drought stress is critical for sustaining ecosystem function in a changing climate. However, it remains unclear whether long-term exposure to arid environments strengthens microbial drought resistance through adaptation, or instead diminishes it by reducing diversity and shifting functional redundancy. To address this, we sampled soil microbiota (including bacteria, fungi, and protists) communities along a 3600-km aridity and temperature gradient in Chinese grasslands, and assessed their compositional resistance to experimental drought. We found that microbiota drought resistance decreased with increasing aridity and temperature, particularly for bacteria and protists. This reduced resistance was attributed to declines in taxonomic diversity, larger microbiota body size, and compositional shifts toward oligotrophic taxa in drier regions. These findings suggest that structural shifts in soil communities associated with chronic arid climate may heighten vulnerability to acute drought events, potentially eroding ecosystem resistance as future climate extremes intensify.</p>\u0000 </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145084402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuesen Pang, Tao Zhou, Chengjie Ren, Nianpeng He, Zhenghu Zhou
{"title":"Forest Productivity Enhancement Over the Past Two Decades Is Associated With Plant–Microbial Interactions","authors":"Xuesen Pang, Tao Zhou, Chengjie Ren, Nianpeng He, Zhenghu Zhou","doi":"10.1111/gcb.70505","DOIUrl":"10.1111/gcb.70505","url":null,"abstract":"<div>\u0000 \u0000 <p>Improving forest productivity is a key natural strategy for mitigating climate warming; however, the role of soil microbiomes in large-scale temporal trends in forest productivity has been largely overlooked. Here, we conducted a national-scale survey across China's forests to explore spatial variation in the temporal trend in forest productivity over the past two decades (2001–2023) and its covariation with soil microbiomes. The forest productivity in China (72 sites) showed an increasing trend over the past two decades, especially in temperate forests with high soil phosphorus availability. Moreover, our random forest analysis revealed that soil microbial traits were the most important factors that correlated with the temporal trend in forest productivity. Specifically, the enhancement of forest productivity was positively associated with high microbial diversity, abundant plant growth-promoting microbial genes, stronger mycorrhizal associations, and a microbial life history strategy of high yield, whether or not climates, soil properties, soil nutrients, forest age, and global change factors were controlled. Overall, our findings suggest that long-term co-adaptation between plants and microbes is likely to enhance forest productivity, which may provide a negative feedback to climate change by promoting forest carbon sinks.</p>\u0000 </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145068727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}