通过扩大局部测量估算全球土壤甲烷吸收

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Jiawei Jiang, Zhifeng Yan, Jinshi Jian, Shushi Peng, Hanqin Tian, Kendalynn A. Morris, Robert M. Ellam, Jesper Riis Christiansen, Huai Chen, Jianzhi Dong, Si-Liang Li, Pingqing Fu, Dabo Guan, Guirui Yu, Cong-Qiang Liu, Philippe Ciais, Ben Bond-Lamberty
{"title":"通过扩大局部测量估算全球土壤甲烷吸收","authors":"Jiawei Jiang,&nbsp;Zhifeng Yan,&nbsp;Jinshi Jian,&nbsp;Shushi Peng,&nbsp;Hanqin Tian,&nbsp;Kendalynn A. Morris,&nbsp;Robert M. Ellam,&nbsp;Jesper Riis Christiansen,&nbsp;Huai Chen,&nbsp;Jianzhi Dong,&nbsp;Si-Liang Li,&nbsp;Pingqing Fu,&nbsp;Dabo Guan,&nbsp;Guirui Yu,&nbsp;Cong-Qiang Liu,&nbsp;Philippe Ciais,&nbsp;Ben Bond-Lamberty","doi":"10.1111/gcb.70194","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Aerobic soils remove methane from the atmosphere, but global soil methane uptake (SMU) estimates remain highly uncertain due to challenges in scaling local data. We develop a data-driven approach to refine this global estimate by incorporating local data of 79,800 flux measurements from 198 sites. This novel approach links the global SMU budget to local SMU fluxes by varying its parameters with soil properties. Our 2003–2018 global SMU estimate is ~39.0 Tg CH<sub>4</sub> year<sup>−1</sup>—about 30% higher than existing bottom-up estimates and consistent with top-down assessments. Cold grasslands and deserts were found to contribute nearly 30% of the total SMU, while disturbed agricultural biomes have the lowest SMU. The projected future global SMU is shaped by temperature and atmospheric methane, though local SMU is primarily influenced by changes in soil moisture. This study emphasizes the potential of soils in climate regulation and highlights the need to focus on key biomes for a better understanding of the soil-atmosphere methane feedback and optimizing methane management strategies.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Soil Methane Uptake Estimated by Scaling Up Local Measurements\",\"authors\":\"Jiawei Jiang,&nbsp;Zhifeng Yan,&nbsp;Jinshi Jian,&nbsp;Shushi Peng,&nbsp;Hanqin Tian,&nbsp;Kendalynn A. Morris,&nbsp;Robert M. Ellam,&nbsp;Jesper Riis Christiansen,&nbsp;Huai Chen,&nbsp;Jianzhi Dong,&nbsp;Si-Liang Li,&nbsp;Pingqing Fu,&nbsp;Dabo Guan,&nbsp;Guirui Yu,&nbsp;Cong-Qiang Liu,&nbsp;Philippe Ciais,&nbsp;Ben Bond-Lamberty\",\"doi\":\"10.1111/gcb.70194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Aerobic soils remove methane from the atmosphere, but global soil methane uptake (SMU) estimates remain highly uncertain due to challenges in scaling local data. We develop a data-driven approach to refine this global estimate by incorporating local data of 79,800 flux measurements from 198 sites. This novel approach links the global SMU budget to local SMU fluxes by varying its parameters with soil properties. Our 2003–2018 global SMU estimate is ~39.0 Tg CH<sub>4</sub> year<sup>−1</sup>—about 30% higher than existing bottom-up estimates and consistent with top-down assessments. Cold grasslands and deserts were found to contribute nearly 30% of the total SMU, while disturbed agricultural biomes have the lowest SMU. The projected future global SMU is shaped by temperature and atmospheric methane, though local SMU is primarily influenced by changes in soil moisture. This study emphasizes the potential of soils in climate regulation and highlights the need to focus on key biomes for a better understanding of the soil-atmosphere methane feedback and optimizing methane management strategies.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 4\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70194\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70194","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

好氧土壤可以从大气中去除甲烷,但全球土壤甲烷吸收量(SMU)的估算仍然高度不确定,因为当地数据的缩放存在挑战。我们开发了一种数据驱动的方法,通过纳入来自198个站点的79,800个通量测量的本地数据来改进这一全球估计。这种新颖的方法通过改变土壤性质的参数,将全球SMU预算与当地SMU通量联系起来。我们对2003-2018年全球SMU的估计为~39.0 Tg CH4年−1 -比现有的自下而上的估计高30%,与自上而下的评估一致。寒冷草原和沙漠占总生态单元的近30%,而受干扰的农业生物群落的生态单元最低。预估的未来全球SMU受温度和大气甲烷的影响,而局部SMU主要受土壤湿度变化的影响。本研究强调了土壤在气候调节中的潜力,并强调了关注关键生物群系以更好地理解土壤-大气甲烷反馈和优化甲烷管理策略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Soil Methane Uptake Estimated by Scaling Up Local Measurements

Global Soil Methane Uptake Estimated by Scaling Up Local Measurements

Aerobic soils remove methane from the atmosphere, but global soil methane uptake (SMU) estimates remain highly uncertain due to challenges in scaling local data. We develop a data-driven approach to refine this global estimate by incorporating local data of 79,800 flux measurements from 198 sites. This novel approach links the global SMU budget to local SMU fluxes by varying its parameters with soil properties. Our 2003–2018 global SMU estimate is ~39.0 Tg CH4 year−1—about 30% higher than existing bottom-up estimates and consistent with top-down assessments. Cold grasslands and deserts were found to contribute nearly 30% of the total SMU, while disturbed agricultural biomes have the lowest SMU. The projected future global SMU is shaped by temperature and atmospheric methane, though local SMU is primarily influenced by changes in soil moisture. This study emphasizes the potential of soils in climate regulation and highlights the need to focus on key biomes for a better understanding of the soil-atmosphere methane feedback and optimizing methane management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信