Jack H. Laverick, Douglas C. Speirs, Michael R. Heath
{"title":"Sea-Ice Retreat From the Northeast Greenland Continental Shelf Triggers a Marine Trophic Cascade","authors":"Jack H. Laverick, Douglas C. Speirs, Michael R. Heath","doi":"10.1111/gcb.70189","DOIUrl":null,"url":null,"abstract":"<p>Climate change is causing sea-ice to retreat from Arctic ecosystems. Loss of ice impacts the ecosystem in many ways, reducing habitat area for specialist species like polar bears, releasing freshwater and nutrients, and increasing light penetration into the water column. To explore the interaction of these effects, we implemented a Northeast Greenland continental shelf parameterisation of the end-to-end ecosystem model StrathE2E. We used model output from the NEMO-MEDUSA ocean-biogeochemistry model under Representative Concentration Pathway 8.5 as driving data, which suggests the northeast Greenland continental shelf will become seasonally ice-free by 2050. We simulated half a century of climate change by running the model system to a set of steady states for each decade from the 2010s to the 2050s. Our simulations show sea-ice retreat from the northeast Greenland continental shelf boosts the productivity of the marine food web. Total living mass increases by over 25%, with proportionally larger increases for higher trophic levels. The exception to this is a 66% reduction in maritime mammal mass. Additional network indices reveal that the ecosystem becomes more mature, with future diets more specialized and a lengthening of the food web. Our model provides long-term strategic insight for the management of the northeast Greenland continental shelf, allowing for the quantitative evaluation of conservation goals and the scale of prospective fisheries. Our results present a mixed picture for the future of the Arctic, with growing populations for fish and charismatic megafauna like cetaceans accompanied by the loss of endemic biodiversity such as polar bears.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70189","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is causing sea-ice to retreat from Arctic ecosystems. Loss of ice impacts the ecosystem in many ways, reducing habitat area for specialist species like polar bears, releasing freshwater and nutrients, and increasing light penetration into the water column. To explore the interaction of these effects, we implemented a Northeast Greenland continental shelf parameterisation of the end-to-end ecosystem model StrathE2E. We used model output from the NEMO-MEDUSA ocean-biogeochemistry model under Representative Concentration Pathway 8.5 as driving data, which suggests the northeast Greenland continental shelf will become seasonally ice-free by 2050. We simulated half a century of climate change by running the model system to a set of steady states for each decade from the 2010s to the 2050s. Our simulations show sea-ice retreat from the northeast Greenland continental shelf boosts the productivity of the marine food web. Total living mass increases by over 25%, with proportionally larger increases for higher trophic levels. The exception to this is a 66% reduction in maritime mammal mass. Additional network indices reveal that the ecosystem becomes more mature, with future diets more specialized and a lengthening of the food web. Our model provides long-term strategic insight for the management of the northeast Greenland continental shelf, allowing for the quantitative evaluation of conservation goals and the scale of prospective fisheries. Our results present a mixed picture for the future of the Arctic, with growing populations for fish and charismatic megafauna like cetaceans accompanied by the loss of endemic biodiversity such as polar bears.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.