{"title":"<i>In vitro</i> models of muscle spindles: From traditional methods to 3D bioprinting strategies.","authors":"Yuannan Kang, Deepak M Kalaskar, Darren J Player","doi":"10.1177/20417314251343388","DOIUrl":"10.1177/20417314251343388","url":null,"abstract":"<p><p>Muscle spindles are key proprioceptive mechanoreceptors composed of intrafusal fibres that regulate kinaesthetic sensations and reflex actions. Traumatic injuries and neuromuscular diseases can severely impair the proprioceptive feedback, yet the regenerative potential and cell-matrix interactions of muscle spindles remain poorly understood. There is a pressing need for robust tissue-engineered models to study spindle development, function and regeneration. Traditional approaches, while insightful, often lack physiological relevance and scalability. Three-dimensional (3D) bioprinting offers a promising approach to fabricate biomimetic, scalable, and animal-free muscle spindle constructs with controlled cellular architecture. Various bioprinting techniques - including inkjet, extrusion, digital light projection and laser-assisted bioprinting - have been explored for skeletal muscle fabrication, but replicating intrafusal fibre complexity remains a challenge. A major challenge lies in bioink development, where biocompatibility, printability and mechanical strength must be balanced to support intrafusal fibre differentiation and proprioceptive function. Recent molecular insights into spindle anatomy, innervation and extracellular matrix composition are shaping biofabrication strategies. This review discusses the current state of muscle spindle modelling, the application of 3D bioprinting in intrafusal fibre engineering, key challenges and future directions.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251343388"},"PeriodicalIF":7.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144731967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction: Estradiol-17β [E2] stimulates wound healing in a 3D in vitro tissue-engineered vaginal wound model.","authors":"","doi":"10.1177/20417314251358965","DOIUrl":"https://doi.org/10.1177/20417314251358965","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.1177/20417314221149207.].</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251358965"},"PeriodicalIF":6.7,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in biomaterial-based composite spheroid for articular cartilage regeneration.","authors":"Nopphadol Udomluck, Hansoo Park, Jae Young Lee","doi":"10.1177/20417314251349669","DOIUrl":"10.1177/20417314251349669","url":null,"abstract":"<p><p>Articular cartilage plays a crucial role in reducing friction between bones and enabling movements; however, it is frequently degraded due to persistent joint stress, aging, and osteoarthritis. As its self-repair ability is limited, various cell-based therapeutic strategies have been developed for cartilage regeneration. Conventional two-dimensional (2D) cell cultures inadequately replicate the complex intercellular interactions of native cartilage. In contrast, three-dimensional (3D) cell spheroid cultures can more accurately mimic in vivo cellular physiology, offering superior regenerative potential via improved cell-cell and cell-matrix interactions. These interactions can be enhanced with biomaterials to form composite spheroids, which exhibit substantial potential for improving cartilage regeneration and attenuating osteoarthritis progression in vivo by promoting cell survival and tissue integration. This review highlights current strategies for developing biomimetic composite spheroid systems, including spheroid encapsulation, scaffold incorporation, and 3D bioprinting. Furthermore, we discuss their advantages, translational potential for in vivo cartilage repair, and the challenges and future directions in cartilage tissue engineering.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251349669"},"PeriodicalIF":6.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144584223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji Hye Park, Ji-Seok Han, Eun-Jung Ann, Cho Yeon Kim, Byoung-Seok Lee, Ji Su Kang, Sun-Sook Song, Junhee Lee, Sun-Woong Kang
{"title":"Enhanced cell sheet engineering through combination of single cells and spheroids on liquid interface using perfluorocarbon.","authors":"Ji Hye Park, Ji-Seok Han, Eun-Jung Ann, Cho Yeon Kim, Byoung-Seok Lee, Ji Su Kang, Sun-Sook Song, Junhee Lee, Sun-Woong Kang","doi":"10.1177/20417314251350316","DOIUrl":"10.1177/20417314251350316","url":null,"abstract":"<p><p>Cell sheet engineering provides a scaffold-free strategy for fabricating cohesive tissue constructs, but challenges remain in maintaining structural integrity and mimicking complex tissue architectures. This study demonstrated perfluorodecalin-based liquid-liquid interfaces, known for their inertness and stability, as a simple, and efficient platform for fabricating cell sheets. Using single cells, spheroids, and their combination, we evaluated methods to enhance sheet formation. Single cells formed cohesive sheets at high densities (4 × 10<sup>6</sup> cells/well) but exhibited limited long-term stability due to nutrient constraints. Spheroids formed robust sheets at lower densities (2 × 10<sup>6</sup> cells/well), whereas higher densities impaired fusion. The mixed approach combined the advantages of both, improving uniformity, mechanical stability, and spheroid fusion, while mimicking muscle-like structures with vascular networks. Additionally, the cell sheets retained adipogenic and chondrogenic differentiation potential, highlighting their functional viability. These findings establish liquid interfaces as a practical and versatile platform for tissue engineering, regenerative medicine, and in vitro modeling.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251350316"},"PeriodicalIF":6.7,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144528431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henrike Loeffler, Jan-Oliver Sass, Lorena Muelders, Julian Bauer, Oliver Friedrich, Rainer Bader, Annett Klinder, Janine Waletzko-Hellwig
{"title":"Comprehensive characterization of cell and tissue responses toward high hydrostatic pressure treatment: Molecular feedback and structural integrity in bone graft processing.","authors":"Henrike Loeffler, Jan-Oliver Sass, Lorena Muelders, Julian Bauer, Oliver Friedrich, Rainer Bader, Annett Klinder, Janine Waletzko-Hellwig","doi":"10.1177/20417314251337193","DOIUrl":"10.1177/20417314251337193","url":null,"abstract":"<p><p>In the field of tissue reconstruction, the development and improvement of suitable bone grafts is of increasing importance. The implementation of bone banks enables the international distribution of suitable allografts that can be used for defect reconstruction. Currently used procedures have significant drawbacks, especially regarding biomechanical and structural properties. These can be overcome by using the technique of high hydrostatic pressure (HHP) processing. To date, little is known about the impact of HHP protocol alterations including pressure-transmitting medium or temperature regarding bone graft integrity. Data of the present study show that a low-temperature and medium-pressure treatment using isotonic sodium chloride solution as the pressure-transmitting medium generated devitalized bone tissue with preserved extracellular matrix. Specifically, efficient devitalization of human primary osteoblasts (hOBs) was found starting from 150 MPa with cell death being a complex interaction between different mechanisms. Furthermore, protein denaturation in response to HHP treatment that was predominantly observed at 600 MPa led to non-significant impairment of biomechanical properties. Effects of HHP treatment on the bone tissue did not lead to any noticeable compromise in biocompatibility. Accordingly, the presented protocol may be applied as a medical device to improve the outcome of patients undergoing bone defect reconstruction with allogenic grafts.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251337193"},"PeriodicalIF":6.7,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144528430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in hydrogels for capturing and neutralizing inflammatory cytokines.","authors":"Hongwei Qin, Ze Li, Sicheng Li, Jinjian Huang, Jianan Ren, Xiuwen Wu","doi":"10.1177/20417314251342175","DOIUrl":"10.1177/20417314251342175","url":null,"abstract":"<p><p>Inflammatory cytokines play a crucial role in the inflammatory response, and their aberrant expression and overproduction are closely associated with the development of many diseases. However, traditional inflammation treatment strategies are often accompanied by serious side effects, limiting their widespread use. In recent years, hydrogel, as a material with a three-dimensional network structure, good biocompatibility and modulability, has great potential for trapping and neutralizing inflammatory factors. Hydrogels can capture and neutralize inflammatory cytokines through various mechanisms such as electrostatic interactions, coupling with cytokine antibodies or binding nanoparticles. In addition, hydrogel microspheres, an important form of hydrogels, have excellent broad-spectrum binding of inflammatory cytokines in combination schemes with cell membranes. This article reviews recent research advances in hydrogel capture and neutralization of inflammatory cytokines, discussing the advantages of various mechanisms and their applications in different diseases. Overall, we believe that hydrogels are expected to further advance the development of therapeutic modalities for inflammatory diseases in the future.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251342175"},"PeriodicalIF":6.7,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lenie Vanhove, Thomas Van Gansbeke, Bert Devriendt, Ruben Van der Meeren, Ruslan I Dmitriev, Irina A Okkelman
{"title":"Lack of biochemical signalling in GelMA leads to polarity reversion in intestinal organoids independent from mechanoreciprocity.","authors":"Lenie Vanhove, Thomas Van Gansbeke, Bert Devriendt, Ruben Van der Meeren, Ruslan I Dmitriev, Irina A Okkelman","doi":"10.1177/20417314251345000","DOIUrl":"10.1177/20417314251345000","url":null,"abstract":"<p><p>Xenogeneic tumour origin and batch-to-batch variability of Engelbreth-Holm-Swarm sarcoma tumour cell-derived hydrogels (Matrigel, Cultrex) limit the biomedical application of organoids in tissue engineering. The gelatin-methacryloyl (GelMA) hydrogels represent a defined, tunable, and GMP-friendly alternative, but they are rarely studied as alternative to Matrigel. Here, we studied effects of mechanical properties of GelMA and addition of laminin-111 on encapsulation and growth of small intestinal organoids. GelMA-embedded organoids displayed polarity reversion, resulting in apical-out and apical-basal phenotypes, independent from the matrix stiffness. Addition of laminin-111 softened hydrogels and also resulted in a partial restoration of the basal-out phenotype. Interestingly, despite the incomplete polarity restoration, GelMA-organoids still showed minor growth. GelMA stiffness and concentration influenced the transition from 3D to 2D organoid cultures. Collectively, our study confirms that tuning of GelMA mechanical properties alone cannot recapitulate the basal membrane matrix. However, controlled polarity reversion offers a tool for engineering organoids and enabling apical membrane access.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251345000"},"PeriodicalIF":6.7,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144302382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mercedes Olvera-Valencia, Verónica Garcia-Castillo, Rosalío Ramos-Payan, Maribel Aguilar-Medina, Samuel Trujano-Camacho, Alejandro López-Saavedra, Laurence A Marchat, Cesar López-Camarillo, Ronen Sumagin, Eloy Pérez-Yepez, Carlos Pérez-Plasencia
{"title":"Development of a reliable method for human triple-negative breast cancer organotypic culture: Improving imaging and genomic studies in 3D cultures.","authors":"Mercedes Olvera-Valencia, Verónica Garcia-Castillo, Rosalío Ramos-Payan, Maribel Aguilar-Medina, Samuel Trujano-Camacho, Alejandro López-Saavedra, Laurence A Marchat, Cesar López-Camarillo, Ronen Sumagin, Eloy Pérez-Yepez, Carlos Pérez-Plasencia","doi":"10.1177/20417314251326668","DOIUrl":"https://doi.org/10.1177/20417314251326668","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is highly aggressive and lacks targeted therapies, posing a major challenge in oncology. Traditional two-dimensional (2D) cell cultures fail to capture the tumor microenvironment's complexity, whereas three-dimensional (3D) cultures provide a more accurate model of tumor biology. We developed an advanced 3D culture system for TNBC cell lines BT-20 and MDA-MB-231, enhancing the hanging-drop method with Matrigel to restore essential extracellular matrix interactions. Confocal imaging showed MDA-MB-231 cells forming clusters typical of aggressive carcinoma, while BT-20 cells organized into duct-like structures. Molecular analysis of PI3K and β-catenin target genes revealed distinct expression patterns, with PI3K overexpressed and β-catenin downregulated in 3D cultures. Moreover, β-catenin distribution in the 3D cell culture closely resembles its pattern in tissue. These findings underscore the value of 3D models in understanding TNBC progression and in supporting the exploration of novel therapeutic strategies.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251326668"},"PeriodicalIF":6.7,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12059422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143969064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an iPSC-derived immunocompetent skin model for identification of skin sensitizing substances.","authors":"Marla Dubau, Tarada Tripetchr, Lava Mahmoud, Fabian Schumacher, Burkhard Kleuser","doi":"10.1177/20417314251336296","DOIUrl":"https://doi.org/10.1177/20417314251336296","url":null,"abstract":"<p><p>The development of immunocompetent skin models marks a significant advancement in in vitro methods for detecting skin sensitizers while adhering to the 3R principles, which aim to reduce, refine, and replace animal testing. This study introduces for the first time an advanced immunocompetent skin model constructed entirely from induced pluripotent stem cell (iPSC)-derived cell types, including fibroblasts (iPSC-FB), keratinocytes (iPSC-KC), and fully integrated dendritic cells (iPSC-DC). To evaluate the skin model's capacity, the model was treated topically with a range of well-characterized skin sensitizers varying in potency. The results indicate that the iPSC-derived immunocompetent skin model successfully replicates the physiological responses of human skin, offering a robust and reliable alternative to animal models for skin sensitization testing, allowing detection of extreme and even weak sensitizers. By addressing critical aspects of immune activation and cytokine signaling, this model provides an ethical, comprehensive tool for regulatory toxicology and dermatological research.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251336296"},"PeriodicalIF":6.7,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144015191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduarda Mota-Silva, Diana C Martinez, Giuseppina Basta, Serena Babboni, Serena Del Turco, Davide Fragnito, Stefano Salvadori, Claudia Kusmic, Leon Riehakainen, Daniele Panetta, Beatrice Campanella, Massimo Onor, Tomasz Plocinski, Wojciech Swieszkowski, Luca Menichetti
{"title":"Monitoring osseointegration and degradation of Mg-alloy implants through plasma biomarkers of inflammation and bone regeneration.","authors":"Eduarda Mota-Silva, Diana C Martinez, Giuseppina Basta, Serena Babboni, Serena Del Turco, Davide Fragnito, Stefano Salvadori, Claudia Kusmic, Leon Riehakainen, Daniele Panetta, Beatrice Campanella, Massimo Onor, Tomasz Plocinski, Wojciech Swieszkowski, Luca Menichetti","doi":"10.1177/20417314241290595","DOIUrl":"https://doi.org/10.1177/20417314241290595","url":null,"abstract":"<p><p>Magnesium-degradable implants have excellent mechanical and osteogenic properties for temporary orthopedic use but are underutilized due to insufficient methods to monitor implant osseointegration and tissue healing. This study evaluated the use of circulatory biomarkers to monitor the bilateral implantation of a Mg-alloy in rats' femurs. A total of 16 biomarkers were measured from plasma samples collected at multiple timepoints up to 90 days post-implantation. Mg-alloy, Ti-alloy, and Sham (noncritical bone defect) groups were followed with computed tomography, histological, and SEM-EDX analysis. The Sham group showed higher DKK1, OPG, VEGF, and KIM-1 levels than implanted groups. The Mg-alloy group had delayed bone regeneration due to gas release but demonstrated active regeneration up to 180 days and superior osseointegration. Elevated IL-10 and reduced FGF23 at day 28 correlated with accelerated implant degradation. These results underline the complex interactions between biomaterials and biological systems in orthopedic applications and show the value of circulating markers to follow-up implantation.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314241290595"},"PeriodicalIF":6.7,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144020244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}