{"title":"水凝胶捕获和中和炎症细胞因子的研究进展。","authors":"Hongwei Qin, Ze Li, Sicheng Li, Jinjian Huang, Jianan Ren, Xiuwen Wu","doi":"10.1177/20417314251342175","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory cytokines play a crucial role in the inflammatory response, and their aberrant expression and overproduction are closely associated with the development of many diseases. However, traditional inflammation treatment strategies are often accompanied by serious side effects, limiting their widespread use. In recent years, hydrogel, as a material with a three-dimensional network structure, good biocompatibility and modulability, has great potential for trapping and neutralizing inflammatory factors. Hydrogels can capture and neutralize inflammatory cytokines through various mechanisms such as electrostatic interactions, coupling with cytokine antibodies or binding nanoparticles. In addition, hydrogel microspheres, an important form of hydrogels, have excellent broad-spectrum binding of inflammatory cytokines in combination schemes with cell membranes. This article reviews recent research advances in hydrogel capture and neutralization of inflammatory cytokines, discussing the advantages of various mechanisms and their applications in different diseases. Overall, we believe that hydrogels are expected to further advance the development of therapeutic modalities for inflammatory diseases in the future.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251342175"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198567/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in hydrogels for capturing and neutralizing inflammatory cytokines.\",\"authors\":\"Hongwei Qin, Ze Li, Sicheng Li, Jinjian Huang, Jianan Ren, Xiuwen Wu\",\"doi\":\"10.1177/20417314251342175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory cytokines play a crucial role in the inflammatory response, and their aberrant expression and overproduction are closely associated with the development of many diseases. However, traditional inflammation treatment strategies are often accompanied by serious side effects, limiting their widespread use. In recent years, hydrogel, as a material with a three-dimensional network structure, good biocompatibility and modulability, has great potential for trapping and neutralizing inflammatory factors. Hydrogels can capture and neutralize inflammatory cytokines through various mechanisms such as electrostatic interactions, coupling with cytokine antibodies or binding nanoparticles. In addition, hydrogel microspheres, an important form of hydrogels, have excellent broad-spectrum binding of inflammatory cytokines in combination schemes with cell membranes. This article reviews recent research advances in hydrogel capture and neutralization of inflammatory cytokines, discussing the advantages of various mechanisms and their applications in different diseases. Overall, we believe that hydrogels are expected to further advance the development of therapeutic modalities for inflammatory diseases in the future.</p>\",\"PeriodicalId\":17384,\"journal\":{\"name\":\"Journal of Tissue Engineering\",\"volume\":\"16 \",\"pages\":\"20417314251342175\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/20417314251342175\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314251342175","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Advances in hydrogels for capturing and neutralizing inflammatory cytokines.
Inflammatory cytokines play a crucial role in the inflammatory response, and their aberrant expression and overproduction are closely associated with the development of many diseases. However, traditional inflammation treatment strategies are often accompanied by serious side effects, limiting their widespread use. In recent years, hydrogel, as a material with a three-dimensional network structure, good biocompatibility and modulability, has great potential for trapping and neutralizing inflammatory factors. Hydrogels can capture and neutralize inflammatory cytokines through various mechanisms such as electrostatic interactions, coupling with cytokine antibodies or binding nanoparticles. In addition, hydrogel microspheres, an important form of hydrogels, have excellent broad-spectrum binding of inflammatory cytokines in combination schemes with cell membranes. This article reviews recent research advances in hydrogel capture and neutralization of inflammatory cytokines, discussing the advantages of various mechanisms and their applications in different diseases. Overall, we believe that hydrogels are expected to further advance the development of therapeutic modalities for inflammatory diseases in the future.
期刊介绍:
The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.