Sarah Shafaat, Sabiniano Roman Regueros, Christopher Chapple, Sheila MacNeil, Vanessa Hearnden
{"title":"Estradiol-17β [E<sub>2</sub>] stimulates wound healing in a 3D in vitro tissue-engineered vaginal wound model.","authors":"Sarah Shafaat, Sabiniano Roman Regueros, Christopher Chapple, Sheila MacNeil, Vanessa Hearnden","doi":"10.1177/20417314221149207","DOIUrl":"https://doi.org/10.1177/20417314221149207","url":null,"abstract":"<p><p>Childbirth contributes to common pelvic floor problems requiring reconstructive surgery in postmenopausal women. Our aim was to develop a tissue-engineered vaginal wound model to investigate wound healing and the contribution of estradiol to pelvic tissue repair. Partial thickness scalpel wounds were made in tissue models based on decellularized sheep vaginal matrices cultured with primary sheep vaginal epithelial cells and fibroblasts. Models were cultured at an airliquid interface (ALI) for 3 weeks with and without estradiol-17β [E<sub>2</sub>]. Results showed that E<sub>2</sub> significantly increased wound healing and epithelial maturation. Also, E<sub>2</sub> led to collagen reorganization after only 14 days with collagen fibers more regularly aligned and compactly arranged Additionally, E<sub>2</sub> significantly downregulated α-SMA expression which is involved in fibrotic tissue formation. This model allows one to investigate multiple steps in vaginal wound healing and could be a useful tool in developing therapies for improved tissue healing after reconstructive pelvic floor surgery.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"14 ","pages":"20417314221149207"},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/91/10.1177_20417314221149207.PMC9885031.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10642929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Shafiullah Shajib, Kathryn Futrega, Rose Ann G Franco, Eamonn McKenna, Bianca Guillesser, Travis J Klein, Ross W Crawford, Michael R Doran
{"title":"Method for manufacture and cryopreservation of cartilage microtissues.","authors":"Md Shafiullah Shajib, Kathryn Futrega, Rose Ann G Franco, Eamonn McKenna, Bianca Guillesser, Travis J Klein, Ross W Crawford, Michael R Doran","doi":"10.1177/20417314231176901","DOIUrl":"https://doi.org/10.1177/20417314231176901","url":null,"abstract":"<p><p>The financial viability of a cell and tissue-engineered therapy may depend on the compatibility of the therapy with mass production and cryopreservation. Herein, we developed a method for the mass production and cryopreservation of 3D cartilage microtissues. Cartilage microtissues were assembled from either 5000 human bone marrow-derived stromal cells (BMSC) or 5000 human articular chondrocytes (ACh) each using a customized microwell platform (the Microwell-mesh). Microtissues rapidly accumulate homogenous cartilage-like extracellular matrix (ECM), making them potentially useful building blocks for cartilage defect repair. Cartilage microtissues were cultured for 5 or 10 days and then cryopreserved in 90% serum plus 10% dimethylsulfoxide (DMSO) or commercial serum-free cryopreservation media. Cell viability was maximized during thawing by incremental dilution of serum to reduce oncotic shock, followed by washing and further culture in serum-free medium. When assessed with live/dead viability dyes, thawed microtissues demonstrated high viability but reduced immediate metabolic activity relative to unfrozen control microtissues. To further assess the functionality of the freeze-thawed microtissues, their capacity to amalgamate into a continuous tissue was assess over a 14 day culture. The amalgamation of microtissues cultured for 5 days was superior to those that had been cultured for 10 days. Critically, the capacity of cryopreserved microtissues to amalgamate into a continuous tissue in a subsequent 14-day culture was not compromised, suggesting that cryopreserved microtissues could amalgamate within a cartilage defect site. The quality ECM was superior when amalgamation was performed in a 2% O<sub>2</sub> atmosphere than a 20% O<sub>2</sub> atmosphere, suggesting that this process may benefit from the limited oxygen microenvironment within a joint. In summary, cryopreservation of cartilage microtissues is a viable option, and this manipulation can be performed without compromising tissue function.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"14 ","pages":"20417314231176901"},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10649796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Idan Carmon, Shira Kalmus, Anna Zobrab, Michael Alterman, Raphaelle Emram, May Gussarsky, Leonid Kandel, Eli Reich, Nardi Casap, Mona Dvir-Ginzberg
{"title":"Repairing a critical cranial defect using WISP1-pretreated chondrocyte scaffolds.","authors":"Idan Carmon, Shira Kalmus, Anna Zobrab, Michael Alterman, Raphaelle Emram, May Gussarsky, Leonid Kandel, Eli Reich, Nardi Casap, Mona Dvir-Ginzberg","doi":"10.1177/20417314231159740","DOIUrl":"https://doi.org/10.1177/20417314231159740","url":null,"abstract":"<p><p>In cranial flat bone fractures, spontaneous bone repair will occur only when the fracture ends are in close contact. However, in cases wherein bone discontinuity is extensive, surgical interventions are often required. To this end, autologous bone is harvested and surgically integrated into the site of fracture. Here we propose to use cartilage, as an alternative autologous source, to promote cranial fracture repair. The advantage of this approach is the potential reduction in donor site morbidity, likely due to the avascular and aneural nature of cartilage. As a first step we attempted to induce cartilage mineralization in vitro, using micromass primary chondrocyte cultures, incubated with BMP2 and/or WISP1, which were examined histologically following a 3-week culture period. Next, chondrocyte seeded collagen scaffolds were evaluated in vitro for expression profiles and ALP activity. Finally, chondrocyte-seeded collagen scaffolds were implanted in a Lewis rats 8 mm critical calvaria defect model, which was imaged via live CT for 12 weeks until sacrifice. End points were analyzed for microCT, histology, and serum levels of bone related markers. Micromass cultures exhibited an osseous inducing trend following WISP1 administration, which was maintained in chondrocyte seeded scaffolds. Accordingly, in vivo analysis was carried out to assess the impact of WISP1-pretreated chondrocytes (WCS) versus untreated chondrocytes (UCS) in calvaria defect model and compared to untreated control comprised of a defect-associated blood clot (BC) or empty collagen scaffold (CS) implant. Live CT and microCT exhibited higher mineralization volumes in critical defect implanted with UCS, with some structural improvements in WCS. Histological analysis exhibited higher anabolic bone formation in WCS and trabecular bone was detected in WCS and UCS groups. Chondrocytes implanted into critical cranial defect expedite the formation of native-like osseous tissue, especially after WISP1 priming in culture. Ultimately, these data support the use of autologous chondrocytes to repair critical maxillofacial defects.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"14 ","pages":"20417314231159740"},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b7/ee/10.1177_20417314231159740.PMC10026108.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9166696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingran Liu, Yihao Liu, Lei Qiang, Ya Ren, Yixuan Lin, Han Li, Qiuhan Chen, Shuxin Gao, Xue Yang, Changru Zhang, Minjie Fan, Pengfei Zheng, Shuai Li, Jinwu Wang
{"title":"Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment.","authors":"Xingran Liu, Yihao Liu, Lei Qiang, Ya Ren, Yixuan Lin, Han Li, Qiuhan Chen, Shuxin Gao, Xue Yang, Changru Zhang, Minjie Fan, Pengfei Zheng, Shuai Li, Jinwu Wang","doi":"10.1177/20417314231170371","DOIUrl":"https://doi.org/10.1177/20417314231170371","url":null,"abstract":"<p><p>Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"14 ","pages":"20417314231170371"},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ce/92/10.1177_20417314231170371.PMC10186582.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10645384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuous nutrient supply culture strategy controls multivesicular endosomes pathway and anti-photo-aging miRNA cargo loading of extracellular vesicles.","authors":"Lihao Chen, Weihan Xie, Keke Wu, Yuan Meng, Yijun He, Jiawei Cai, Yuan Jiang, Qi Zhao, Yixi Yang, Minru Zhang, Manping Lu, Shaozhang Lin, Lin Liang, Zhiyong Zhang","doi":"10.1177/20417314231197604","DOIUrl":"https://doi.org/10.1177/20417314231197604","url":null,"abstract":"<p><p>Extracellular vesicle (EV) therapy recently had shown significant efficacy in various diseases. Serum starvation culture (SC) is one of the most widely used methods for collecting EVs. However, SC may cause inadvertent effects and eventually dampen the therapeutic potential of EVs. Therefore, we developed a novel method for EV collection, continuous nutrient supply culture (CC), which can provide an optimal condition for mesenchymal stem cells (MSCs) by continuously supplying essential nutrients to MSCs. By comparing with SC strategy, we revealed that CC could maintain CC-MSCs in a normal autophagy and apoptotic state, which reduced the shunting of EV precursors in cells and useless information material carried by EVs. In CC-MSCs, the expression levels of endosomal sorting complexes required for transport (ESCRT) and targeting GTPase27 (Rab27) were upregulated compared to those in SC-MSCs. Besides, we analyzed the membrane transport efficiency of EV formation, which demonstrated the CC strategy could promote the formation of EV precursors and the release of EVs. In addition, miRNA analysis revealed that CC-EVs were enriched with anti-chronic inflammatory factors, which could inhibit the nuclear factor kappa-B (NF-κB) pathway, mitigate chronic inflammation, and effectively repair skin photo-aging damage.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"14 ","pages":"20417314231197604"},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/49/10.1177_20417314231197604.PMC10478562.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10669369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alec St Smith, Shawn M Luttrell, Jean-Baptiste Dupont, Kevin Gray, Daniel Lih, Jacob W Fleming, Nathan J Cunningham, Sofia Jepson, Jennifer Hesson, Julie Mathieu, Lisa Maves, Bonnie J Berry, Elliot C Fisher, Nathan J Sniadecki, Nicholas A Geisse, David L Mack
{"title":"High-throughput, real-time monitoring of engineered skeletal muscle function using magnetic sensing.","authors":"Alec St Smith, Shawn M Luttrell, Jean-Baptiste Dupont, Kevin Gray, Daniel Lih, Jacob W Fleming, Nathan J Cunningham, Sofia Jepson, Jennifer Hesson, Julie Mathieu, Lisa Maves, Bonnie J Berry, Elliot C Fisher, Nathan J Sniadecki, Nicholas A Geisse, David L Mack","doi":"10.1177/20417314221122127","DOIUrl":"10.1177/20417314221122127","url":null,"abstract":"<p><p>Engineered muscle tissues represent powerful tools for examining tissue level contractile properties of skeletal muscle. However, limitations in the throughput associated with standard analysis methods limit their utility for longitudinal study, high throughput drug screens, and disease modeling. Here we present a method for integrating 3D engineered skeletal muscles with a magnetic sensing system to facilitate non-invasive, longitudinal analysis of developing contraction kinetics. Using this platform, we show that engineered skeletal muscle tissues derived from both induced pluripotent stem cell and primary sources undergo improvements in contractile output over time in culture. We demonstrate how magnetic sensing of contractility can be employed for simultaneous assessment of multiple tissues subjected to different doses of known skeletal muscle inotropes as well as the stratification of healthy versus diseased functional profiles in normal and dystrophic muscle cells. Based on these data, this combined culture system and magnet-based contractility platform greatly broadens the potential for 3D engineered skeletal muscle tissues to impact the translation of novel therapies from the lab to the clinic.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"13 ","pages":"20417314221122127"},"PeriodicalIF":6.7,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f5/15/10.1177_20417314221122127.PMC9445471.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samantha B Bremner, Christian J Mandrycky, Andrea Leonard, Ruby M Padgett, Alan R Levinson, Ethan S Rehn, J Manuel Pioner, Nathan J Sniadecki, David L Mack
{"title":"Full-length dystrophin deficiency leads to contractile and calcium transient defects in human engineered heart tissues.","authors":"Samantha B Bremner, Christian J Mandrycky, Andrea Leonard, Ruby M Padgett, Alan R Levinson, Ethan S Rehn, J Manuel Pioner, Nathan J Sniadecki, David L Mack","doi":"10.1177/20417314221119628","DOIUrl":"10.1177/20417314221119628","url":null,"abstract":"<p><p>Cardiomyopathy is currently the leading cause of death for patients with Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys. Animal models have provided insight into the mechanisms by which dystrophin protein deficiency causes cardiomyopathy, but there remains a need to develop human models of DMD to validate pathogenic mechanisms and identify therapeutic targets. Here, we have developed human engineered heart tissues (EHTs) from CRISPR-edited, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing a truncated dystrophin protein lacking part of the actin-binding domain. The 3D EHT platform enables direct measurement of contractile force, simultaneous monitoring of Ca<sup>2+</sup> transients, and assessment of myofibril structure. Dystrophin-mutant EHTs produced less contractile force as well as delayed kinetics of force generation and relaxation, as compared to isogenic controls. Contractile dysfunction was accompanied by reduced sarcomere length, increased resting cytosolic Ca<sup>2+</sup> levels, delayed Ca<sup>2+</sup> release and reuptake, and increased beat rate irregularity. Transcriptomic analysis revealed clear differences between dystrophin-deficient and control EHTs, including downregulation of genes related to Ca<sup>2+</sup> homeostasis and extracellular matrix organization, and upregulation of genes related to regulation of membrane potential, cardiac muscle development, and heart contraction. These findings indicate that the EHT platform provides the cues necessary to expose the clinically-relevant, functional phenotype of force production as well as mechanistic insights into the role of Ca<sup>2+</sup> handling and transcriptomic dysregulation in dystrophic cardiac function, ultimately providing a powerful platform for further studies in disease modeling and drug discovery.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"13 ","pages":"20417314221119628"},"PeriodicalIF":6.7,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/58/10.1177_20417314221119628.PMC9393922.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9407329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisca M Acosta, Katerina Stojkova, Jingruo Zhang, Eric Ivan Garcia Huitron, Jean X Jiang, Christopher R Rathbone, Eric M Brey
{"title":"Engineering Functional Vascularized Beige Adipose Tissue from Microvascular Fragments of Models of Healthy and Type II Diabetes Conditions.","authors":"Francisca M Acosta, Katerina Stojkova, Jingruo Zhang, Eric Ivan Garcia Huitron, Jean X Jiang, Christopher R Rathbone, Eric M Brey","doi":"10.1177/20417314221109337","DOIUrl":"10.1177/20417314221109337","url":null,"abstract":"<p><p>Engineered beige adipose tissues could be used for screening therapeutic strategies or as a direct treatment for obesity and metabolic disease. Microvascular fragments are vessel structures that can be directly isolated from adipose tissue and may contain cells capable of differentiation into thermogenic, or beige, adipocytes. In this study, culture conditions were investigated to engineer three-dimensional, vascularized functional beige adipose tissue using microvascular fragments isolated from both healthy animals and a model of type II diabetes (T2D). Vascularized beige adipose tissues were engineered and exhibited increased expression of beige adipose markers, enhanced function, and improved cellular respiration. While microvascular fragments isolated from both lean and diabetic models were able to generate functional tissues, differences were observed in regard to vessel assembly and tissue function. This study introduces an approach that could be employed to engineer vascularized beige adipose tissues from a single, potentially autologous source of cells.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"13 ","pages":"20417314221109337"},"PeriodicalIF":8.2,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/59/10.1177_20417314221109337.PMC9248044.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10432955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noémie Bérenger-Currias, Maria Mircea, Esmée Adegeest, Patrick R. van den Berg, M. Feliksik, Mazène Hochane, T. Idema, S. Tans, S. Semrau
{"title":"A gastruloid model of the interaction between embryonic and extra-embryonic cell types","authors":"Noémie Bérenger-Currias, Maria Mircea, Esmée Adegeest, Patrick R. van den Berg, M. Feliksik, Mazène Hochane, T. Idema, S. Tans, S. Semrau","doi":"10.1177/20417314221103042","DOIUrl":"https://doi.org/10.1177/20417314221103042","url":null,"abstract":"Stem-cell derived in vitro systems, such as organoids or embryoids, hold great potential for modeling in vivo development. Full control over their initial composition, scalability, and easily measurable dynamics make those systems useful for studying specific developmental processes in isolation. Here we report the formation of gastruloids consisting of mouse embryonic stem cells (mESCs) and extraembryonic endoderm (XEN) cells. These XEN-enhanced gastruloids (XEGs) exhibit the formation of neural epithelia, which are absent in gastruloids derived from mESCs only. By single-cell RNA-seq, imaging, and differentiation experiments, we demonstrate the neural characteristics of the epithelial tissue. We further show that the mESCs induce the differentiation of the XEN cells to a visceral endoderm-like state. Finally, we demonstrate that local inhibition of WNT signaling and production of a basement membrane by the XEN cells underlie the formation of the neuroepithelial tissue. In summary, we establish XEGs to explore heterotypic cellular interactions and their developmental consequences in vitro.","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43417676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decellularization for the retention of tissue niches.","authors":"Deana Moffat, Kaiming Ye, Sha Jin","doi":"10.1177/20417314221101151","DOIUrl":"10.1177/20417314221101151","url":null,"abstract":"<p><p>Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"13 ","pages":"20417314221101151"},"PeriodicalIF":6.7,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/ef/10.1177_20417314221101151.PMC9128068.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9997575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}