Preclinical and clinical orthotopic transplantation of decellularized/engineered tracheal scaffolds: A systematic literature review.

IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING
Journal of Tissue Engineering Pub Date : 2023-02-27 eCollection Date: 2023-01-01 DOI:10.1177/20417314231151826
Elena Stocco, Silvia Barbon, Marco Mammana, Giovanni Zambello, Martina Contran, Pier Paolo Parnigotto, Veronica Macchi, Maria Teresa Conconi, Federico Rea, Raffaele De Caro, Andrea Porzionato
{"title":"Preclinical and clinical orthotopic transplantation of decellularized/engineered tracheal scaffolds: A systematic literature review.","authors":"Elena Stocco, Silvia Barbon, Marco Mammana, Giovanni Zambello, Martina Contran, Pier Paolo Parnigotto, Veronica Macchi, Maria Teresa Conconi, Federico Rea, Raffaele De Caro, Andrea Porzionato","doi":"10.1177/20417314231151826","DOIUrl":null,"url":null,"abstract":"<p><p>Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease. To support translational medicine in this field, here we provide a systematic review on studies recurring to decellularized/bioengineered tracheas implantation. After describing the specific methodological aspects, orthotopic implant results are verified. Furtherly, the only three clinical cases of compassionate use of tissue engineered tracheas are reported with a focus on outcomes.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"14 ","pages":"20417314231151826"},"PeriodicalIF":6.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/80/30/10.1177_20417314231151826.PMC9974632.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314231151826","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease. To support translational medicine in this field, here we provide a systematic review on studies recurring to decellularized/bioengineered tracheas implantation. After describing the specific methodological aspects, orthotopic implant results are verified. Furtherly, the only three clinical cases of compassionate use of tissue engineered tracheas are reported with a focus on outcomes.

脱细胞/工程气管支架的临床前和临床正位移植:系统性文献综述。
严重的气管损伤无法通过移动和端对端吻合术进行处理,这是一种尚未得到满足的临床需求,也是外科手术实践中面临的一项紧迫挑战;在这种情况下,脱细胞支架(最终是生物工程支架)是目前组织工程替代品中一个诱人的选择。脱细胞气管的成功体现了在去除细胞的同时保留细胞外基质(ECM)结构/机械性能的平衡方法。翻阅文献,许多作者报告了开发无细胞气管 ECM 的不同方法,但只有少数作者通过在疾病动物模型中进行异位植入验证了该装置的有效性。为了支持这一领域的转化医学,我们在此对有关脱细胞气管/生物工程气管植入的研究进行了系统综述。在介绍了具体方法后,我们对正位植入结果进行了验证。此外,我们还报告了仅有的三例恩恤使用组织工程气管的临床病例,并重点介绍了其结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信