Ji Hye Park, Ji-Seok Han, Eun-Jung Ann, Cho Yeon Kim, Byoung-Seok Lee, Ji Su Kang, Sun-Sook Song, Junhee Lee, Sun-Woong Kang
{"title":"通过使用全氟碳在液体界面上结合单细胞和球体来增强细胞片工程。","authors":"Ji Hye Park, Ji-Seok Han, Eun-Jung Ann, Cho Yeon Kim, Byoung-Seok Lee, Ji Su Kang, Sun-Sook Song, Junhee Lee, Sun-Woong Kang","doi":"10.1177/20417314251350316","DOIUrl":null,"url":null,"abstract":"<p><p>Cell sheet engineering provides a scaffold-free strategy for fabricating cohesive tissue constructs, but challenges remain in maintaining structural integrity and mimicking complex tissue architectures. This study demonstrated perfluorodecalin-based liquid-liquid interfaces, known for their inertness and stability, as a simple, and efficient platform for fabricating cell sheets. Using single cells, spheroids, and their combination, we evaluated methods to enhance sheet formation. Single cells formed cohesive sheets at high densities (4 × 10<sup>6</sup> cells/well) but exhibited limited long-term stability due to nutrient constraints. Spheroids formed robust sheets at lower densities (2 × 10<sup>6</sup> cells/well), whereas higher densities impaired fusion. The mixed approach combined the advantages of both, improving uniformity, mechanical stability, and spheroid fusion, while mimicking muscle-like structures with vascular networks. Additionally, the cell sheets retained adipogenic and chondrogenic differentiation potential, highlighting their functional viability. These findings establish liquid interfaces as a practical and versatile platform for tissue engineering, regenerative medicine, and in vitro modeling.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251350316"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206988/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced cell sheet engineering through combination of single cells and spheroids on liquid interface using perfluorocarbon.\",\"authors\":\"Ji Hye Park, Ji-Seok Han, Eun-Jung Ann, Cho Yeon Kim, Byoung-Seok Lee, Ji Su Kang, Sun-Sook Song, Junhee Lee, Sun-Woong Kang\",\"doi\":\"10.1177/20417314251350316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell sheet engineering provides a scaffold-free strategy for fabricating cohesive tissue constructs, but challenges remain in maintaining structural integrity and mimicking complex tissue architectures. This study demonstrated perfluorodecalin-based liquid-liquid interfaces, known for their inertness and stability, as a simple, and efficient platform for fabricating cell sheets. Using single cells, spheroids, and their combination, we evaluated methods to enhance sheet formation. Single cells formed cohesive sheets at high densities (4 × 10<sup>6</sup> cells/well) but exhibited limited long-term stability due to nutrient constraints. Spheroids formed robust sheets at lower densities (2 × 10<sup>6</sup> cells/well), whereas higher densities impaired fusion. The mixed approach combined the advantages of both, improving uniformity, mechanical stability, and spheroid fusion, while mimicking muscle-like structures with vascular networks. Additionally, the cell sheets retained adipogenic and chondrogenic differentiation potential, highlighting their functional viability. These findings establish liquid interfaces as a practical and versatile platform for tissue engineering, regenerative medicine, and in vitro modeling.</p>\",\"PeriodicalId\":17384,\"journal\":{\"name\":\"Journal of Tissue Engineering\",\"volume\":\"16 \",\"pages\":\"20417314251350316\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/20417314251350316\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314251350316","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Enhanced cell sheet engineering through combination of single cells and spheroids on liquid interface using perfluorocarbon.
Cell sheet engineering provides a scaffold-free strategy for fabricating cohesive tissue constructs, but challenges remain in maintaining structural integrity and mimicking complex tissue architectures. This study demonstrated perfluorodecalin-based liquid-liquid interfaces, known for their inertness and stability, as a simple, and efficient platform for fabricating cell sheets. Using single cells, spheroids, and their combination, we evaluated methods to enhance sheet formation. Single cells formed cohesive sheets at high densities (4 × 106 cells/well) but exhibited limited long-term stability due to nutrient constraints. Spheroids formed robust sheets at lower densities (2 × 106 cells/well), whereas higher densities impaired fusion. The mixed approach combined the advantages of both, improving uniformity, mechanical stability, and spheroid fusion, while mimicking muscle-like structures with vascular networks. Additionally, the cell sheets retained adipogenic and chondrogenic differentiation potential, highlighting their functional viability. These findings establish liquid interfaces as a practical and versatile platform for tissue engineering, regenerative medicine, and in vitro modeling.
期刊介绍:
The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.