Lenie Vanhove, Thomas Van Gansbeke, Bert Devriendt, Ruben Van der Meeren, Ruslan I Dmitriev, Irina A Okkelman
{"title":"GelMA中缺乏生化信号导致肠道类器官的极性逆转,不依赖于机械互易性。","authors":"Lenie Vanhove, Thomas Van Gansbeke, Bert Devriendt, Ruben Van der Meeren, Ruslan I Dmitriev, Irina A Okkelman","doi":"10.1177/20417314251345000","DOIUrl":null,"url":null,"abstract":"<p><p>Xenogeneic tumour origin and batch-to-batch variability of Engelbreth-Holm-Swarm sarcoma tumour cell-derived hydrogels (Matrigel, Cultrex) limit the biomedical application of organoids in tissue engineering. The gelatin-methacryloyl (GelMA) hydrogels represent a defined, tunable, and GMP-friendly alternative, but they are rarely studied as alternative to Matrigel. Here, we studied effects of mechanical properties of GelMA and addition of laminin-111 on encapsulation and growth of small intestinal organoids. GelMA-embedded organoids displayed polarity reversion, resulting in apical-out and apical-basal phenotypes, independent from the matrix stiffness. Addition of laminin-111 softened hydrogels and also resulted in a partial restoration of the basal-out phenotype. Interestingly, despite the incomplete polarity restoration, GelMA-organoids still showed minor growth. GelMA stiffness and concentration influenced the transition from 3D to 2D organoid cultures. Collectively, our study confirms that tuning of GelMA mechanical properties alone cannot recapitulate the basal membrane matrix. However, controlled polarity reversion offers a tool for engineering organoids and enabling apical membrane access.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251345000"},"PeriodicalIF":6.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lack of biochemical signalling in GelMA leads to polarity reversion in intestinal organoids independent from mechanoreciprocity.\",\"authors\":\"Lenie Vanhove, Thomas Van Gansbeke, Bert Devriendt, Ruben Van der Meeren, Ruslan I Dmitriev, Irina A Okkelman\",\"doi\":\"10.1177/20417314251345000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Xenogeneic tumour origin and batch-to-batch variability of Engelbreth-Holm-Swarm sarcoma tumour cell-derived hydrogels (Matrigel, Cultrex) limit the biomedical application of organoids in tissue engineering. The gelatin-methacryloyl (GelMA) hydrogels represent a defined, tunable, and GMP-friendly alternative, but they are rarely studied as alternative to Matrigel. Here, we studied effects of mechanical properties of GelMA and addition of laminin-111 on encapsulation and growth of small intestinal organoids. GelMA-embedded organoids displayed polarity reversion, resulting in apical-out and apical-basal phenotypes, independent from the matrix stiffness. Addition of laminin-111 softened hydrogels and also resulted in a partial restoration of the basal-out phenotype. Interestingly, despite the incomplete polarity restoration, GelMA-organoids still showed minor growth. GelMA stiffness and concentration influenced the transition from 3D to 2D organoid cultures. Collectively, our study confirms that tuning of GelMA mechanical properties alone cannot recapitulate the basal membrane matrix. However, controlled polarity reversion offers a tool for engineering organoids and enabling apical membrane access.</p>\",\"PeriodicalId\":17384,\"journal\":{\"name\":\"Journal of Tissue Engineering\",\"volume\":\"16 \",\"pages\":\"20417314251345000\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/20417314251345000\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314251345000","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Lack of biochemical signalling in GelMA leads to polarity reversion in intestinal organoids independent from mechanoreciprocity.
Xenogeneic tumour origin and batch-to-batch variability of Engelbreth-Holm-Swarm sarcoma tumour cell-derived hydrogels (Matrigel, Cultrex) limit the biomedical application of organoids in tissue engineering. The gelatin-methacryloyl (GelMA) hydrogels represent a defined, tunable, and GMP-friendly alternative, but they are rarely studied as alternative to Matrigel. Here, we studied effects of mechanical properties of GelMA and addition of laminin-111 on encapsulation and growth of small intestinal organoids. GelMA-embedded organoids displayed polarity reversion, resulting in apical-out and apical-basal phenotypes, independent from the matrix stiffness. Addition of laminin-111 softened hydrogels and also resulted in a partial restoration of the basal-out phenotype. Interestingly, despite the incomplete polarity restoration, GelMA-organoids still showed minor growth. GelMA stiffness and concentration influenced the transition from 3D to 2D organoid cultures. Collectively, our study confirms that tuning of GelMA mechanical properties alone cannot recapitulate the basal membrane matrix. However, controlled polarity reversion offers a tool for engineering organoids and enabling apical membrane access.
期刊介绍:
The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.