Journal of The Energy Institute最新文献

筛选
英文 中文
CoCe composite catalyst for CO2 hydrogenation: Effect of pore structure 用于二氧化碳加氢的 CoCe 复合催化剂:孔结构的影响
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-05 DOI: 10.1016/j.joei.2024.101856
Guilin Zhou , Liying Xie , Fengqiong Xie , Shuang Chen , Jia Zeng , Hongmei Xie
{"title":"CoCe composite catalyst for CO2 hydrogenation: Effect of pore structure","authors":"Guilin Zhou ,&nbsp;Liying Xie ,&nbsp;Fengqiong Xie ,&nbsp;Shuang Chen ,&nbsp;Jia Zeng ,&nbsp;Hongmei Xie","doi":"10.1016/j.joei.2024.101856","DOIUrl":"10.1016/j.joei.2024.101856","url":null,"abstract":"<div><div>In order to realize the dual carbon goals of “carbon peaking” and “carbon neutrality”, the design and development CO<sub>2</sub> hydrogenation catalyst with high performances is of great significance. In this study, the CoCe composite catalysts were prepared by different methods and used to CO<sub>2</sub> catalytic hydrogenation. The physicochemical properties of the prepared catalysts were characterized by XRD, BET, TEM/HRTEM, and H<sub>2</sub>-TPD. The characterization results indicated that the studied CoCe composite catalytsts with different pore structure can be prepared by different preparation methods. The suitable preparation method can promote Co species to be dissolved into the CeO<sub>2</sub> lattice to form Ce-O-Co solid solution, which can promote the corresponding Co species to be reduced by H<sub>2</sub> to form active Co<sup>0</sup> species. The large specific surface area and developed ordered mesoporous structure of the CoCe-HT catalyst precursor, which was prepared by hard-template method, are conducive to the formation of active Co<sup>0</sup> species and activation of H<sub>2</sub> to produce reactive H species. The CO<sub>2</sub> hydrogenation activity of the studied CoCe composite catalysts follows the following order: CoCe-HT &gt; CoCe-CP &gt; CoCe-CA &gt; CoCe-HY. The CoCe-HT catalyst showed high CO<sub>2</sub> hydrogenation conversion of 53.9 % and good using stability at 360 °C for 600 min. However, the CoCe-CA prepared by complex method has a poor use stability.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101856"},"PeriodicalIF":5.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuel consumption and exhaust emissions from Euro 6d vehicles fueled by innovative LPG/DME blend 以创新型液化石油气/二甲醚混合物为燃料的欧 6d 车辆的燃料消耗量和尾气排放量
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-05 DOI: 10.1016/j.joei.2024.101851
T. Rossi , S. Lixi , S. Puricelli , M. Grosso , D. Faedo , S. Casadei
{"title":"Fuel consumption and exhaust emissions from Euro 6d vehicles fueled by innovative LPG/DME blend","authors":"T. Rossi ,&nbsp;S. Lixi ,&nbsp;S. Puricelli ,&nbsp;M. Grosso ,&nbsp;D. Faedo ,&nbsp;S. Casadei","doi":"10.1016/j.joei.2024.101851","DOIUrl":"10.1016/j.joei.2024.101851","url":null,"abstract":"<div><div>The aim of this research was to investigate the exhaust emissions from vehicles when fueled by a new and fully renewable fuel if made of bio-LPG and renewable dimethyl ether (DME), in comparison with standard gasoline. For this purpose, DME was mixed with liquefied petroleum gas (LPG) and used to fuel three bi-fuel LPG/gasoline spark-ignition engines light-duty vehicles. The suitable fuel blend was selected based on several octane tests using CFR engines. Exhaust emissions were tested over the WLTC and over the hot-start CADC cycles, as well as on the road. All Euro 6 standards were well fully met over the WLTC with both fuels. Switching from gasoline to LPG/DME fueling, the CO and NOx emission factors increased for two vehicles, whereas THC and NMHC decreased. Regarding particulates, for two vehicles the emission factors decreased, too. Generally, when the vehicles were driven on the CADC, lower gaseous emissions were observed compared to WLTC: excluding one vehicle, when switching from gasoline to LPG/DME fueling, the overall emission profiles reflected those of the same vehicles run on the WLTC. The unregulated particulate emissions measured over both testing cycles reflect what was detected for the regulated ones. Except for PN10, which was not measured, all regulated emissions were found to meet the (most severe) Euro 7 standards proposed at first by the European Commission. RDE tests showed that all vehicle emissions obtained from on-road tests were also found to meet the RDE standards, regardless of the fueling. Concerning CO<sub>2</sub> emissions, LPG/DME fueling guaranteed a systematic decrease for all vehicles and cycles, both on road and in the laboratory. The present investigation aims at demonstrating that the innovative LPG/DME 80 %/20 % (m/m) blend not only can be deemed as potentially suitable for GHG emissions reduction, as long as both DME and propane are obtained from renewable sources, but even compliant with EN 589 and both Euro 6 and part of preliminary Euro 7 exhaust emission proposal.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101851"},"PeriodicalIF":5.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the catalytic conversion of aromatic model compounds of coal pyrolysis over Ca(OH)2 探索煤热解芳香模型化合物在 Ca(OH)2 上的催化转化
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-04 DOI: 10.1016/j.joei.2024.101850
Xiaoguo Zhang, Yun Yang, Wei Lu, Danni Ren, Shenfu Yuan
{"title":"Exploring the catalytic conversion of aromatic model compounds of coal pyrolysis over Ca(OH)2","authors":"Xiaoguo Zhang,&nbsp;Yun Yang,&nbsp;Wei Lu,&nbsp;Danni Ren,&nbsp;Shenfu Yuan","doi":"10.1016/j.joei.2024.101850","DOIUrl":"10.1016/j.joei.2024.101850","url":null,"abstract":"<div><div>The distribution of pyrolysis products from aromatic model compounds in coal catalyzed by Ca(OH)<sub>2</sub> was investigated at the molecular level. The composition and relative abundance of the pyrolysis products from coal were analyzed using Py-GC/MS. The rapid pyrolysis products of coal at 600 °C consisted of phenols (15.94 %), non-phenolic oxygenated compounds (25.31 %), aliphatics (49.03 %), aromatic compounds (21.74 %), and other compounds (0.03 %). Six representative aromatic model compounds (2-methoxy-4-methylphenol, p-cresol, 2,4-dimethylphenol, o-cresol, guaiacol, and catechol) were selected. The pyrolysis process of model compounds was primarily the cleavage of C-O and C-C bonds, which resulted in the formation of methoxy and methyl radicals. The results revealed that Ca(OH)<sub>2</sub> undergoes acid-base reactions with -OH, thereby increasing the stability of the model compounds. Notably, the impact of Ca(OH)<sub>2</sub> on the composition and distribution of pyrolysis products was significantly more pronounced in aromatic compounds containing both -OCH<sub>3</sub> and -OH compared to those containing solely -OH. The formation pathways of pyrolysis products involving guaiacol and Ca(OH)<sub>2</sub> were elucidated through density functional theory (DFT) calculations, demonstrating that Ca(OH)<sub>2</sub> could facilitate more free radicals release and the conversion of model compounds. This study contributes to the understanding of the transformation of aromatic compounds during coal pyrolysis at the molecular level.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101850"},"PeriodicalIF":5.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust online monitoring system for PCDD/Fs in a full-scale MSWI by Deans switch: Efficiently separation and purification 通过迪恩斯开关,对大规模 MSWI 中的多氯二苯并对二恶英和多氯二苯并呋喃进行在线监测:高效分离和净化
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-03 DOI: 10.1016/j.joei.2024.101852
Lulu Dong , Wenqian Jiang , Minghui Tang , Kaicheng Wu , Shijian Xiong , Shengyong Lu , Fanjie Shang
{"title":"Robust online monitoring system for PCDD/Fs in a full-scale MSWI by Deans switch: Efficiently separation and purification","authors":"Lulu Dong ,&nbsp;Wenqian Jiang ,&nbsp;Minghui Tang ,&nbsp;Kaicheng Wu ,&nbsp;Shijian Xiong ,&nbsp;Shengyong Lu ,&nbsp;Fanjie Shang","doi":"10.1016/j.joei.2024.101852","DOIUrl":"10.1016/j.joei.2024.101852","url":null,"abstract":"<div><div>Existing online monitoring system for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), technically named Thermal Desorption-Gas Chromatography-Tunable Laser Ionization-Time of Flight Mass Spectrometry (TD-GC-TLI-TOFMS), has been applied in several incinerators in China. TD-GC-TLI-TOFMS can realize rapid detection of PCDD/Fs emissions from incineration sources. However, the long-term measurement of unclean flue gas will pollute the instruments in TD-GC-TLI-TOFMS, and interfere with the peak output of the target 1,2,4-trichlorobenzene (1,2,4-TrCBz). In this study, Deans switch (DS) was utilized for the first time in an online monitoring system for PCDD/Fs to separate 1,2,4-TrCBz signal from impurity signals, which improved the anti-interference capability of the system. Laboratory standard gas experiments showed that after adding a DS device between GC and TLI pulse valve, when the pressure set in DS was 4 psi and switched before or near the peak output of 1,2,4-TrCBz, the change of 1,2,4-TrCBz signal intensity was minimal. The impurities near the target peak were removed, and TLI-TOFMS was highly stable during continuous measurement. Moreover, the maximum intensity peak time of 1,2,4-TrCBz was stable after using DS in different switching time intervals. When connecting DS to TD-GC-TLI-TOFMS for field validation on the tail flue gas of a municipal solid waste incinerator (MSWI), results showed that a better 1,2,4-TrCBz signal could be obtained with a 69.52 % reduction of impurity peaks at the moments closer to the target peak. Furthermore, DS improved the sensitivity of the system to low concentration variations of 1,2,4-TrCBz in the flue gas. The robust system developed in this study can be better applied to incineration factories with poor combustion or suboptimal purification technology, facilitating online PCDD/Fs monitoring.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101852"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NH3 co-firing strategy in 500 MW tangential utility boiler: Impact of blending methods 500 兆瓦切向公用事业锅炉中的 NH3 联合燃烧策略:混合方法的影响
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-03 DOI: 10.1016/j.joei.2024.101854
Yijie Zeng , Hyun-Yeong Jo , Seung-Mo Kim , Byoung-Hwa Lee , Chung-Hwan Jeon
{"title":"NH3 co-firing strategy in 500 MW tangential utility boiler: Impact of blending methods","authors":"Yijie Zeng ,&nbsp;Hyun-Yeong Jo ,&nbsp;Seung-Mo Kim ,&nbsp;Byoung-Hwa Lee ,&nbsp;Chung-Hwan Jeon","doi":"10.1016/j.joei.2024.101854","DOIUrl":"10.1016/j.joei.2024.101854","url":null,"abstract":"<div><div>Ammonia co-firing is increasingly regarded as an effective strategy to reduce CO<sub>2</sub> emissions in coal-fired boilers. In this study, we introduce and evaluate two innovative fuel blending methods for ammonia-coal co-firing in a commercial 500 MW utility boiler: burner blending and in-boiler blending. Using computational fluid dynamics simulations, we investigated the effects of 20 % ammonia co-firing on heat transfer efficiency, fuel burnout rate, and pollutant emissions. The results show that while ammonia co-firing effectively reduces CO<sub>2</sub> emissions, it also leads to decreases in the furnace and furnace exit-gas temperatures due to the lower flame temperature and increased moisture production. Specifically, the total heat absorption by the water walls and heat exchangers decreased by 4.58 % in the burner blending method and 2.27 % in the in-boiler blending method compared to that with pure coal combustion. Although ammonia co-firing suppresses the generation of thermal NO, overall NO emissions increase significantly due to the substantial release of fuel NO. However, the in-boiler blending method demonstrated superior NO reduction, reducing NO emissions by 13.48 ppm compared to the burner blending method. In addition, the in-boiler blending method showed better combustion stability, achieving faster ignition and reducing the amount of unburned carbon in fly ash by 0.97 %, compared to that with the burner blending method. This is likely due to the higher concentration of combustible gases near the burner in the in-boiler blending system. These findings indicate that the in-boiler blending method is more effective than the burner blending method for ammonia-coal co-firing in a 500 MW utility boiler. This provides valuable insights into the implementation of ammonia co-firing in commercial boilers as part of efforts to achieve carbon neutrality.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101854"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the influence of synthesized hierarchical ZSM-5 catalyst in ex-situ catalytic conversion of real-world plastic waste into aromatic rich liquid oil 探究合成分层 ZSM-5 催化剂在将现实世界中的塑料废弃物原位催化转化为富含芳香烃的液体油中的影响
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-03 DOI: 10.1016/j.joei.2024.101853
Subhashini, Tarak Mondal
{"title":"Probing the influence of synthesized hierarchical ZSM-5 catalyst in ex-situ catalytic conversion of real-world plastic waste into aromatic rich liquid oil","authors":"Subhashini,&nbsp;Tarak Mondal","doi":"10.1016/j.joei.2024.101853","DOIUrl":"10.1016/j.joei.2024.101853","url":null,"abstract":"<div><div>Plastic waste management has become a vitally important environmental and economic concern for researchers and technologists worldwide. Currently, catalytic pyrolysis of plastic waste emerged as a promising plastic waste management technique, further aiding the full-scale development of an alternate innovation to convert plastic waste into fuel (liquid oil) energy. Lately, zeolites have been one of the most suitable and versatile catalysts in converting plastic waste into fuel grade hydrocarbons via catalytic pyrolysis. The present work exhibits an attempt to synthesize and study the performance of a hierarchical ZSM-5 in a fixed bed reactor to convert the real-world (LDPE, HDPE, PP and PS) plastic wastes into higher quality fuel grade liquid oil. The hierarchical ZSM-5 catalyst having both mesopores and micropores (dual porosity) in its framework is synthesized by using a single organic template i.e., 10 % tetra propylammonium hydroxide (TPAOH). The catalyst performance study displays remarkable selectivity and increase in the yield of the aromatic component in the liquid oil obtained from different plastic wastes. The results indicate that presence of hierarchical catalyst has exceptionally lowered the reaction temperature in the range of 400–430 °C and increased the liquid oil yield in comparison with that of the thermal pyrolysis. Also, the obtained liquid oils have comparable fuel properties with that of kerosene and diesel.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101853"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing biofuel production in hydrothermal liquefaction of cassava rhizome through alkaline catalyst application and water-soluble product recirculation 通过应用碱性催化剂和水溶性产品再循环,提高木薯根茎水热液化过程中的生物燃料产量
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-03 DOI: 10.1016/j.joei.2024.101848
Parinvadee Chukaew , Sanchai Kuboon , Wasawat Kraithong , Bunyarit Panyapinyopol , Vorapot Kanokkantapong , Jakkapon Phanthuwongpakdee , Kamonwat Nakason
{"title":"Enhancing biofuel production in hydrothermal liquefaction of cassava rhizome through alkaline catalyst application and water-soluble product recirculation","authors":"Parinvadee Chukaew ,&nbsp;Sanchai Kuboon ,&nbsp;Wasawat Kraithong ,&nbsp;Bunyarit Panyapinyopol ,&nbsp;Vorapot Kanokkantapong ,&nbsp;Jakkapon Phanthuwongpakdee ,&nbsp;Kamonwat Nakason","doi":"10.1016/j.joei.2024.101848","DOIUrl":"10.1016/j.joei.2024.101848","url":null,"abstract":"<div><div>Hydrothermal liquefaction (HTL) possesses an outstanding biomass thermal conversion technology for producing biocrude oil (BO). Here, cassava rhizome (CR) was converted into BO via catalytic HTL using 1.0–10.0 wt% of K<sub>2</sub>CO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub> with water-soluble product (WSP) recirculation at 275 °C for 15 min. The catalysts and WSP recirculation could enhance the BO fuel properties. The dominant BO yield of 38.00 and 34.80 wt% and HHV of 25.42 and 25.92 Mj/kg were derived using 4.0 wt% of K<sub>2</sub>CO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub>, respectively. Chemical compositions of the BO were principally phenols and hydrocarbons, which can be further upgraded and fractionated into alternative biofuels. On the other hand, the mass yield and HHV of the hydrochar (HC) co-product were reduced by the alkaline catalysts, while being maintained by WSP recirculation. The HC fuel characterization elucidated that the HC can be used as an alternative to coal. Furthermore, WSP characterization determined that organic acids were the major composition of the WSP. Thus, WSP recirculation can enhance CR decomposition according to the proposed reaction mechanism. These results indicate that the alkaline application and WSP recirculation constitute a dominant method for enhancing biofuel production via HTL.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101848"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the hydrothermal gradient extraction of hemicellulose by a flow-through reactor 利用流动反应器进行半纤维素水热梯度提取的研究
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-10-03 DOI: 10.1016/j.joei.2024.101855
Jing-Xian Wang , Da-Meng Wang , Wen-Long Xu , Xuan-Jie Zou , Pei-Jie Zong , Hao-Zhe Zhang , Yan-Chao Shang , Jia-Lin Zhao , Yi-Fan Wu , Ying-Yun Qiao , Yuan-Yu Tian
{"title":"Study on the hydrothermal gradient extraction of hemicellulose by a flow-through reactor","authors":"Jing-Xian Wang ,&nbsp;Da-Meng Wang ,&nbsp;Wen-Long Xu ,&nbsp;Xuan-Jie Zou ,&nbsp;Pei-Jie Zong ,&nbsp;Hao-Zhe Zhang ,&nbsp;Yan-Chao Shang ,&nbsp;Jia-Lin Zhao ,&nbsp;Yi-Fan Wu ,&nbsp;Ying-Yun Qiao ,&nbsp;Yuan-Yu Tian","doi":"10.1016/j.joei.2024.101855","DOIUrl":"10.1016/j.joei.2024.101855","url":null,"abstract":"<div><div>The hydrothermal gradient extraction process based on the hemicellulose constituent units is important for obtaining high quality hemicellulose products. The hydrothermal extraction of sawdust hemicellulose was performed under both non-isothermal and isothermal operations using a flow-through reactor for investigating the extraction patterns. The results show that there were significant differences in the major forms of hemicellulose units at different extraction stages. For glucose, xylose, and galactose units, the selectivity of oligomeric form decreased gradually with increasing temperature, whereas it decreased and then increased under thermostatic operation. The selectivity of the mannose oligomeric form decreased and then increased in both operation modes, reaching a trough at 170 °C (96.81 %) and 60 min (55.21 %), respectively. The molecular weight of extracted hemicelluloses were mainly distributed below 70,000 Da, and gradually decreased with temperature, but increased with time. The results contribute to the quantitative and qualitative understanding of the hemicellulose gradient extraction process.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101855"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical test devices and methods for internal combustion engines and optical studies on spray combustion characteristics for three different alternative fuels: A review 内燃机的光学测试设备和方法,以及对三种不同替代燃料的喷雾燃烧特性的光学研究:综述
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-09-28 DOI: 10.1016/j.joei.2024.101845
Shuqiang Liu , Jie Zhang , Jingyu Xue , Mingliang Chen , Leyang Dai , Zibin Yin , Yaoqi Kang
{"title":"Optical test devices and methods for internal combustion engines and optical studies on spray combustion characteristics for three different alternative fuels: A review","authors":"Shuqiang Liu ,&nbsp;Jie Zhang ,&nbsp;Jingyu Xue ,&nbsp;Mingliang Chen ,&nbsp;Leyang Dai ,&nbsp;Zibin Yin ,&nbsp;Yaoqi Kang","doi":"10.1016/j.joei.2024.101845","DOIUrl":"10.1016/j.joei.2024.101845","url":null,"abstract":"<div><div>Due to the increasingly stringent emission regulations and the rising call for energy saving and emission reduction, efficient and clean combustion in internal combustion engines have become a research priority. However, the in-cylinder spray combustion process is complex and variable due to a variety of factors. Spray combustion, as a key segment of combustion in internal combustion engines, plays a key role in the efficient and clean combustion of internal combustion engines. The optical test device can truly observe the spray combustion in the cylinder of an internal combustion engine by equipping with an optical window. This paper focuses on the study of internal combustion engine optics, and reviews the current major optical test devices, optical detection methods, and spray combustion characteristics of three different alternative fuels. Firstly, the paper reviews three commonly used optical test devices, namely, CVCB, RCM and optical engine, and their studies on laminar flame, ignition delay and flash spray. Subsequently, the paper summarizes the spray combustion characteristic parameters and nine commonly used optical test methods that are well suited to determine spray morphology, concentration field, velocity field, combustion characteristics and intermediate composition. Finally, the paper summarizes the spray combustion characteristics of three alternative fuels.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101845"},"PeriodicalIF":5.6,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on K-modified Ca-based dual-functional materials for carbon capture and in-situ methane dry reforming 用于碳捕获和原位甲烷干重整的 K 改性 Ca 基双功能材料研究
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-09-27 DOI: 10.1016/j.joei.2024.101847
Rui Jiang, Zhenwu Miao, Laihong Shen
{"title":"Study on K-modified Ca-based dual-functional materials for carbon capture and in-situ methane dry reforming","authors":"Rui Jiang,&nbsp;Zhenwu Miao,&nbsp;Laihong Shen","doi":"10.1016/j.joei.2024.101847","DOIUrl":"10.1016/j.joei.2024.101847","url":null,"abstract":"<div><div>Integrated carbon capture and in-situ methane dry reforming (ICCU-DRM) is a promising technology for chemical looping transformation, this process involves the sequential switching of feedstocks within a single reactor, allowing CO<sub>2</sub> capture to occur before methane dry reforming without direct CO<sub>2</sub>-CH<sub>4</sub> contact. However, a significant challenge in the ICCU-DRM process is the disparity between the optimal temperatures required for carbon capture and dry reforming, with the latter necessitating considerably higher temperatures. This could lead to substantial CO<sub>2</sub> losses when the reaction temperature is elevated to the optimal level for dry reforming. To address this issue and improve CO<sub>2</sub> conversion efficiency, this study explores K doping in synthesizing a dual-functional material, NiCa<sub>1.6</sub>K<sub>0.4</sub>@Al<sub>2</sub>O<sub>3</sub>, through extrusion-spheronization. The synthesized material exhibits a stable pore structure and a large internal surface area, crucial for enhancing CO<sub>2</sub> capture. The optimum temperature for DRM is around 800 °C. Notably, the formation of K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub> during the calcination of NiCa<sub>1.6</sub>K<sub>0.4</sub>@Al<sub>2</sub>O<sub>3</sub>, with a thermal decomposition temperature of approximately 800 °C, plays a crucial role in minimizing CO<sub>2</sub> release during the heating process, thereby significantly improving the CO<sub>2</sub> conversion. To evaluate the impact of K doping on the material, the samples were subjected to carbon capture at 650 °C and dry reforming of methane at 750 °C. The results showed that the CO<sub>2</sub> conversion rate of NiCa<sub>1.6</sub>K<sub>0.4</sub>@Al<sub>2</sub>O<sub>3</sub> reached 52.8 %, compared to only 18.9 % for NiCa<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub> under the same conditions. Moreover, this study also investigates the impact of carbon capture temperature, dry reforming temperature, and catalytic metal loading on the performance of the ICCU-DRM process.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101847"},"PeriodicalIF":5.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信