{"title":"Based on D–π–A structure of near-infrared turn-on fluorescent probe for cysteine imaging in renal ischemia–reperfusion injury in mice","authors":"Chunpo Ge, Feng Pei, Pengcheng Zhang, Xiaoyu Wang, Xiaopeng Jiang, Kaiwen Chang, Zhijun Yang","doi":"10.1016/j.jphotochem.2024.116114","DOIUrl":"10.1016/j.jphotochem.2024.116114","url":null,"abstract":"<div><div>Cysteine (Cys) is an important biomarker, particularly relevant in studying physiological and pathological processes related to oxidative stress. Small-molecule fluorescent probes for detecting Cys are essential in these investigations. In this study, we designed and synthesized the fluorescent probe DCI-Th-Cys, utilizing dicyanoisophorone and acrylic ester as its structural components. DCI-Th-Cys exhibits near-infrared emission at 670 nm, with a large Stokes shift of 190 nm upon reacting with Cys, demonstrating high sensitivity and selectivity. We successfully imaged Cys in both cellular and mouse models, notably detecting elevated Cys levels in the kidneys of a mouse model with renal ischemia–reperfusion injury.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116114"},"PeriodicalIF":4.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced piezo-photocatalytic activity of ZnS/Fe2O3: Benefit from type I junction and weak water flow-induced piezoelectric polarization","authors":"Yingge Zhang , Xiaolei Zhang , Yihe Zhang , Youpeng Zhang , Hongfen Li , Hongwei Huang","doi":"10.1016/j.jphotochem.2024.116117","DOIUrl":"10.1016/j.jphotochem.2024.116117","url":null,"abstract":"<div><div>Photocatalysis is considered to be a sustainable and less polluting environmental purification technology, however, the limited photogenerated charge separation efficiency and light absorption hinder its large-scale application. Encouragingly, piezocatalysis is proposed as an emerging and appealing strategy to drive the migration and separation of photoinduced carriers. Nevertheless, the source of piezocatalysis is usually derived from high energy-consuming ultrasonic vibration. Herein, we realize superior piezo-photocatalytic chlortetracycline hydrochloride degradation performance stimulated by low-frequency water flow-driven piezoelectric polarization of I-type ZnS/Fe<sub>2</sub>O<sub>3</sub> junction. The integration of Fe<sub>2</sub>O<sub>3</sub> is beneficial to extend the light absorption from ultraviolet region to visible range and boost the charge separation efficiency of ZnS/Fe<sub>2</sub>O<sub>3</sub>. Meanwhile, the piezoelectric polarization triggered by weak water flow further promotes the directional separation of photogenerated carriers. With all these merits, the optimized ZnS/Fe<sub>2</sub>O<sub>3</sub> shows a piezo-photocatalytic chlortetracycline hydrochloride (CTC) degradation rate of 73.2 % within 20 min, which is 2.8 and 2.1 times that of Fe<sub>2</sub>O<sub>3</sub> and ZnS, respectively, and 17.4-fold and 1.1-fold that of single stirring and light, respectively. This work provides a feasible guidance for designing efficient piezo-photocatalysts for <em>in-situ</em> purification of wastewater in natural environmental with effective visible light responsiveness and sensitivity to weak mechanical stress.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116117"},"PeriodicalIF":4.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical study on the relationship between ESIPT process and solvent of 9,10-dihydroxybenzo[h]quinolone","authors":"Liangyue Cheng, Alexander G. Cherednichenko","doi":"10.1016/j.jphotochem.2024.116121","DOIUrl":"10.1016/j.jphotochem.2024.116121","url":null,"abstract":"<div><div>To elucidate the relationship between the excited-state intramolecular proton transfer (ESIPT) mechanism of 9,10-dihydroxybenzo[<em>h</em>]quinoline (9-10-HBQ) and the influence of solvents, for better application. This paper focuses on the investigation of hydrogen bond geometric changes, the ESIPT mechanism, and its behavior modulated by solvent polarity. The structural parameters of the ground-state (S<sub>0</sub>) and excited-state (S<sub>1</sub>) related to the hydrogen bond (O<sub>1</sub><img>H<sub>2</sub>⋯O<sub>3</sub>), along with the infrared vibrational spectra, core-valence bifurcation (CVB) index, hydrogen bond bond-critical point (BCP) parameters, RDG function isosurfaces, and scatter plots, reveal that the enhanced hydrogen bond strength in the S<sub>1</sub> state promotes the ESIPT behavior of 9-10-HBQ-PT1. Further frontier molecular orbital and natural Population Analysis (NPA) charge analyses indicate that intramolecular charge redistribution facilitates the ESIPT process. Based on the analysis of potential energy curves, transition states (TS), and intrinsic reaction coordinate (IRC) pathways, we found that the reaction energy barriers can be tuned by the solvent. For example, in cyclohexane (Cy), toluene (Tol), chloroform (TCM), and acetonitrile (ACN), the reaction energy barriers were 7.12 kcal/mol, 7.25 kcal/mol, 7.65 kcal/mol, and 8.15 kcal/mol, respectively.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116121"},"PeriodicalIF":4.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng-Huan Jiang , Mai-Ning Li , Yu Zhao , Yu-Hui Liu , Jun Gao , Chaoyuan Zhu
{"title":"ESIPT-induced intersystem crossing leads to tautomer fluorescence quenching for 3-mercapto-2-(4-(trifluoromethyl)phenyl)-4H-chromen-4-one molecule","authors":"Meng-Huan Jiang , Mai-Ning Li , Yu Zhao , Yu-Hui Liu , Jun Gao , Chaoyuan Zhu","doi":"10.1016/j.jphotochem.2024.116111","DOIUrl":"10.1016/j.jphotochem.2024.116111","url":null,"abstract":"<div><div>The excited-state intramolecular proton-transfer (ESIPT) dynamics of 2-(4-(diethylamino)phenyl)-3-mercapto-4H-chromen-4-one (3NTF) and 3-mercapto-2-(4-(trifluoromethyl)phenyl)-4H-chromen-4-one (3FTF) have been investigated using time-dependent density functional theory (TDDFT). Upon photoexcitation, 3NTF exhibits a single fluorescence emission while 3FTF is fluorescence quenched when dissolved in cyclohexane solution. The present study reveals that both species undergo barrierless ESIPT process, and the underlying reason for fluorescence quenching in 3FTF has been elucidated. Specifically, it is concluded that intersystem crossing (ISC) is responsible for the fluorescence quenching in the 3FTF molecule due to the energy gap between the S<sub>1</sub> and T<sub>2</sub> states is only 0.12 eV plus large S<sub>1</sub> → T<sub>2</sub> spin–orbit coupling resulting in a strong interaction between the singlet and triplet states. The present study provides a reference for the fluorescence quenching associated with thiol-hydrogen bond molecules, and it is helpful for further research on ESIPT reactions of sulfur-containing molecules.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"459 ","pages":"Article 116111"},"PeriodicalIF":4.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-Dong Guo , Chen-Hong Wang , Qiao He , Xiu-Long Yang, Xiao-Ning Guo, Bin Chen, Chen-Ho Tung, Li-Zhu Wu
{"title":"Visible-light-promoted aerobic synthesis of phenanthridinones from biaryl-2-oxamic acids","authors":"Jia-Dong Guo , Chen-Hong Wang , Qiao He , Xiu-Long Yang, Xiao-Ning Guo, Bin Chen, Chen-Ho Tung, Li-Zhu Wu","doi":"10.1016/j.jphotochem.2024.116113","DOIUrl":"10.1016/j.jphotochem.2024.116113","url":null,"abstract":"<div><div>Phenanthridinones is an important structure found in natural products and biologically active molecules. An intramolecular decarboxylative cyclization of biaryl-2-oxamic acids is here presented to generate phenanthridinones, utilizing organic dye (4CzIPN) as the photocatalyst and base (K<sub>3</sub>PO<sub>4</sub>) in air at room temperature. The protocol exhibits great functional group tolerance, good to excellent yields, and scaled up application.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116113"},"PeriodicalIF":4.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chiral discrimination during photoinduced electron transfer from L/D-tryptophan to electron-excited uranyl ion as a part of UO22+ ⊂ α–CD inclusion complex","authors":"Regina R. Kayumova, Sergey L. Khursan","doi":"10.1016/j.jphotochem.2024.116109","DOIUrl":"10.1016/j.jphotochem.2024.116109","url":null,"abstract":"<div><div>Spectral-luminescent research indicates the formation of inclusion complexes during the interaction of uranyl nitrate and α–cyclodextrin (α–CD) in aqueous solutions. The chiral α–CD matrix imparts optical activity to the electronically excited uranyl ion *UO<sub>2</sub><sup>2+</sup><sub>aq</sub> in the clathrate, which manifests itself in the chiral discrimination of the quenching of *UO<sub>2</sub><sup>2+</sup><sub>aq</sub> by tryptophan enantiomers. It was found that the Stern-Volmer constant for D–Trp is 1.8 ± 0.2 times higher than that for L–Trp. A mechanistic explanation for the observed effect is proposed by DFT calculations.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"459 ","pages":"Article 116109"},"PeriodicalIF":4.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of cysteine-functionalized graphene quantum dots – Zinc phthalocyanines supramolecular hybrid system and their sono-photochemical studies","authors":"Gökçe Gökçil , Göknur Yaşa Atmaca , Pınar Şen , Fikrettin Şahin , Ali Erdoğmuş","doi":"10.1016/j.jphotochem.2024.116108","DOIUrl":"10.1016/j.jphotochem.2024.116108","url":null,"abstract":"<div><div>Current PDT agents often suffer from low singlet oxygen quantum yields, photobleaching, and poor biocompatibility. To address these issues, we propose novel PDT agents that combine the synthesized phthalocyanines with cysteine-functionalized graphene quantum dots (cys-GQDs) for the first time. This combination aims to enhance singlet oxygen production and improve solubility in biological media. In this way, new zinc phthalocyanines with halogen substituents were synthesized for potential use in photodynamic therapy (PDT). Specifically, 2-Bromo-4-methylphenol zinc (II) phthalocyanine (<strong>2a</strong>) and 2-chloro-4-methylphenol zinc(II) phthalocyanine (<strong>2b</strong>) and their graphene quantum dots derivatives were synthesized and characterized. The photochemical, sonochemical, and sono-photochemical properties of these compounds were analyzed, focusing on their efficiency in singlet oxygen production. Our studies of the <strong>2a</strong>@cys-GQDs and <strong>2b</strong>@cys-GQDs conjugates demonstrated higher singlet oxygen yields, suggesting their enhanced potential for clinical applications.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"459 ","pages":"Article 116108"},"PeriodicalIF":4.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingzi Lin , Mengshi Wang , Junjie Chen , Siwen Li , Yuanyuan Zhang , Liangliang Wei , Ningning Sun , Chengyu Liu , Junjie Zhao
{"title":"UV-enhanced Fe2+/PDS system for degradation of acid orange 7: Kinetics, degradation mechanism and toxicity assessment","authors":"Yingzi Lin , Mengshi Wang , Junjie Chen , Siwen Li , Yuanyuan Zhang , Liangliang Wei , Ningning Sun , Chengyu Liu , Junjie Zhao","doi":"10.1016/j.jphotochem.2024.116054","DOIUrl":"10.1016/j.jphotochem.2024.116054","url":null,"abstract":"<div><div>Based on the deficiency of the Fe<sup>2+</sup> catalyzed persulfate (PDS) process, ultraviolet (UV) synergistic Fe<sup>2+</sup> activated PDS system was introduced in this study for the degradation of acid orange 7 (AO7) dye. The effects of different initial pH, PDS dosage, Fe<sup>2+</sup> dosage, and different UV intensities on the degradation rate of AO7 were investigated, and a kinetic model for the apparent reaction rate was determined. The results showed that the UV/Fe<sup>2+</sup>/PDS system was effective in degrading AO7 in a wide pH range. Under optimal conditions, 96 % removal of AO7 was achieved in 10 min. The effects of different inorganic anions on AO7 were discussed; Cl<sup>−</sup> had little effect on the degradation effect, and SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup> and HCO<sub>3</sub><sup>−</sup> inhibited the degradation of AO7 by the system to varying degrees. The presence of reactive radicals (SO<sub>4</sub><sup>·−</sup> and·OH) in the reaction was determined by quenching experiments and EPR capture and their degradation contribution was further investigated. Nine intermediates of AO7 were detected by LC-MS/MS, and the degradation pathway of AO7 was inferred by combining with UV-Vis spectra. Finally, the ecotoxicity and tritogenic effects of AO7 intermediates were assessed by Toxtree and T.E.S.T toxicity prediction models, which showed that the final degradation product toxicity was non-mutagenic, non-teratogenic, and devoid of hereditary and non-hereditary carcinogenicity.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116054"},"PeriodicalIF":4.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Yao , Jiang Yuan , Zhaochen Wang , Yanwei Zhao , Jiameng Xu , Mo Liu , Jounghyung Cho , Fuqiang Li
{"title":"Efficient visible-light-driven photocatalytic degradation of indoor formaldehyde using an indium-based MOF/graphene oxide composite","authors":"Yuanyuan Yao , Jiang Yuan , Zhaochen Wang , Yanwei Zhao , Jiameng Xu , Mo Liu , Jounghyung Cho , Fuqiang Li","doi":"10.1016/j.jphotochem.2024.116102","DOIUrl":"10.1016/j.jphotochem.2024.116102","url":null,"abstract":"<div><div>Formaldehyde (HCHO) severely degrades indoor air quality, and conventional remediation methods are often inadequate for addressing low concentrations of HCHO indoors. In this study, we synthesized a MIL-68(In)-NH<sub>2</sub>/graphene oxide (GO) composite using a solvothermal method, aimed specifically at enhancing the photocatalytic degradation of HCHO under visible light. Our results show that the integration of GO enhances visible light absorption and facilitates efficient electron transport, significantly improving photocatalytic performance. The MIL-68(In)-NH<sub>2</sub>/GO composite achieves a 77 % degradation rate of HCHO, significantly outperforming MIL-68(In)-NH<sub>2</sub> (51 %) and GO (22 %) alone. This enhanced activity is attributed to the effective separation of electron-hole pairs and synergistic interactions within the composite. We proposed an enhanced photocatalytic mechanism for the MIL-68(In)-NH<sub>2</sub>/GO system, identifying h<sup>+</sup> and •O<sub>2</sub><sup>–</sup> as the principal active species. Moreover, the MIL-68(In)-NH<sub>2</sub>/GO composite shows excellent reusability and stability, making it a promising candidate for eco-friendly and efficient indoor air purification using metal–organic frameworks.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116102"},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruna M. Rodrigues , Carlos C. Diniz , Mateus H. Köhler , Otávio A. Chaves , Bernardo A. Iglesias
{"title":"Fluorenyl-corroles: Characterization, photophysical, photobiological, and DNA/BSA-binding properties of novel examples","authors":"Bruna M. Rodrigues , Carlos C. Diniz , Mateus H. Köhler , Otávio A. Chaves , Bernardo A. Iglesias","doi":"10.1016/j.jphotochem.2024.116112","DOIUrl":"10.1016/j.jphotochem.2024.116112","url":null,"abstract":"<div><div>In this study, it was evaluated the photophysical, electrochemical, photobiological, and DNA/BSA-binding properties of fluorenyl corrole derivatives <strong>H<sub>3</sub>MFluCor</strong> and <strong>H<sub>3</sub>TFluCor</strong>. Absorption and emission analyses were corroborated by theoretical calculations performed using time-dependent density functional theory, which revealed natural transition orbitals densities concentrated around the tetrapyrrolic macrocycle in all cases. The experimental studies indicated that the corroles <strong>H<sub>3</sub>MFluCor</strong> and <strong>H<sub>3</sub>TFluCor</strong> are stable in solution and exhibited photostability primarily in DMSO(5%)/Tris-HCl (pH 7.4) buffer. The generation of reactive oxygen species (ROS) and log <em>P</em><sub>OW</sub> values highlight their potential application in photobiological methods, as these corroles effectively generate ROS with more lipophilic characteristics. Furthermore, their binding capacity towards double-stranded DNA and bovine serum albumin (BSA) was also evaluated by spectroscopic techniques and molecular docking calculations. The interactive profile with biomolecules indicates that the corrole derivatives <strong>H<sub>3</sub>MFluCor</strong> and <strong>H<sub>3</sub>TFluCor</strong> tend to binding into the minor grooves of DNA through secondary forces, which are particularly pronounced at site III of the BSA, likely due to the static interactions.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116112"},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}