Atif Suhail, Shivang Beniwal, Ramesh Kumar, Anjali Kumar, Monojit Bag
{"title":"Hybrid halide perovskite quantum dots for optoelectronics applications: recent progress and perspective.","authors":"Atif Suhail, Shivang Beniwal, Ramesh Kumar, Anjali Kumar, Monojit Bag","doi":"10.1088/1361-648X/adbb47","DOIUrl":"10.1088/1361-648X/adbb47","url":null,"abstract":"<p><p>Nanotechnology has transformed optoelectronics through quantum dots (QDs), particularly metal halide perovskite QDs (PQDs). PQDs boast high photoluminescent quantum yield, tunable emission, and excellent defect tolerance without extensive passivation. Quantum confinement effects, which refer to the phenomenon where the motion of charge carriers is restricted to a small region, produce discrete energy levels and blue shifts in these materials. They are ideal for next-generation optoelectronic devices prized for superior optical properties, low cost, and straightforward synthesis. In this review, along with the fundamental physics behind the phenomenon, we have covered advances in synthesis methods such as hot injection, ligand-assisted reprecipitation, ultrasonication, solvothermal, and microwave-assisted that enable precise control over size, shape, and stability, enhancing their suitability for LEDs, lasers, and photodetectors. Challenges include lead toxicity and cost, necessitating research into alternative materials and scalable manufacturing. Furthermore, strategies like doping and surface passivation that improve stability and emission control are discussed comprehensively, and how lead halide perovskites like CsPbBr<sub>3</sub>undergo phase transitions with temperature, impacting device performance, are also investigated. We have explored various characterization techniques, providing insights into nanocrystal properties and behaviors in our study. This review highlights PQDs' synthesis, physical and optoelectronic properties, and potential applications across diverse technologies.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul M Masanja, Toraya Fernández-Ruiz, Esther J Tarimo, Nayara Carral-Sainz, P V Kanaka Rao, Vijay Singh, Bernard Mwankemwa, Juan María García-Lastra, Pablo García-Fernández, Javier Junquera
{"title":"Structural and electronic properties of bulk Li<sub>2</sub>O<sub>2</sub>: first-principles simulations based on numerical atomic orbitals.","authors":"Paul M Masanja, Toraya Fernández-Ruiz, Esther J Tarimo, Nayara Carral-Sainz, P V Kanaka Rao, Vijay Singh, Bernard Mwankemwa, Juan María García-Lastra, Pablo García-Fernández, Javier Junquera","doi":"10.1088/1361-648X/adbaa6","DOIUrl":"10.1088/1361-648X/adbaa6","url":null,"abstract":"<p><p>The development of advanced materials with high specific energy is crucial for enabling sustainable energy storage solutions, particularly in applications such as lithium-air batteries. Lithium peroxide (Li<sub>2</sub>O<sub>2</sub>) is a key discharge product in non-aqueous lithium-air systems, where its structural and electronic properties significantly influence battery performance. In this work, we investigate the atomic structure, electronic band structure, and Wannier functions of bulk Li<sub>2</sub>O<sub>2</sub>using density functional theory. The performance of different basis sets of numerical atomic orbitals is compared with respect to converged plane-wave basis results. We analyse the material's ionic characteristics, the formation of molecular orbitals in oxygen dimers, and the band gap discrepancies between various computational approaches. Furthermore, we develop a localized Wannier basis to model electron-vibration interactions and explore their implications for polaron formation. Our findings provide a chemically intuitive framework for understanding electron-lattice coupling and offer a basis for constructing reduced models that accurately describe the dynamics of polarons in Li<sub>2</sub>O<sub>2</sub>. These insights contribute to the broader goal of improving energy storage technologies and advancing the field of materials design.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photo-modulated magnetoresistance in a ferromagnetic/normal/ferromagnetic tunnel junction based on monolayer black phosphorene.","authors":"Yun Li, Dali Wang, Guojun Jin","doi":"10.1088/1361-648X/adbba7","DOIUrl":"10.1088/1361-648X/adbba7","url":null,"abstract":"<p><p>We use the Floquet theory and the Landauer-Büttiker formula to investigate the transport characteristics of a ferromagnetic/normal/ferromagnetic tunnel junction based on monolayer black phosphorene under an off-resonant circularly polarized light (CPL). The results show that the CPL can control the transmission spectrum. In fact, the transmission gap of the antiparallel magnetized configuration is significantly broadened, and the electron blocking effect is enhanced. The transmission of the parallel magnetized configuration shows significant anisotropy and strong wave vector filtering effect. We also demonstrate that the CPL enhances the difference between the conductance of the parallel and antiparallel magnetized configurations, which in turn leads to a significant increase in tunneling magnetoresistance (TMR), even reaching TMR = 1. In particular, under the combined action of polarized light and gate voltage, the TMR in the conduction band region increases, while the TMR in the valence band region decreases. Our results will contribute to the development of optically controllable TMR devices.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetodielectric properties in two dimensional magnetic insulators.","authors":"Koushik Dey, Hasina Khatun, Anudeepa Ghosh, Soumik Das, Bikash Das, Subhadeep Datta","doi":"10.1088/1361-648X/adb923","DOIUrl":"10.1088/1361-648X/adb923","url":null,"abstract":"<p><p>Magnetodielectric (MD) materials are important for their ability to spin-charge conversion, magnetic field control of electric polarization and vice versa. Among these, two-dimensional (2D) van der Waals (vdW) magnetic materials are of particular interest due to the presence of magnetic anisotropy (MA) originating from the interaction between the magnetic moments and the crystal field. Also, these materials indicate a high degree of stability in the long-range spin order and may be described using suitable spin Hamiltonians of the Heisenberg, XY, or Ising type. Recent reports have suggested effective interactions between magnetization and electric polarization in 2D magnets. However, MD coupling studies on layered magnetic materials are still few. This review covers the fundamentals of MD coupling by explaining related key terms. It includes the necessary conditions for having this coupling and sheds light on the possible microscopic mechanisms behind this coupling starting from phenomenological descriptions. Apart from that, this review classifies 2D magnetic materials into several categories for reaching out each and every class of materials. Additionally, this review summarizes recent advancements of some pioneer 2D MD materials. Last but not the least, the current review provides possible research directions for enhancing MD coupling in those and mentions the possibilities for future developments.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143472497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative evaluation of nuclear quantum effects on the phase transitions in BaTiO<sub>3</sub>using large-scale molecular dynamics simulations based on machine learning potentials.","authors":"Kansei Kanayama, Kazuaki Toyoura","doi":"10.1088/1361-648X/adbb9c","DOIUrl":"10.1088/1361-648X/adbb9c","url":null,"abstract":"<p><p>The machine learning potential (MLP) based molecular dynamics (MD) method (MLPMD) was applied for constructing the pressure-temperature phase diagram in the barium titanate (BaTiO<sub>3</sub>) crystals. The nuclear quantum effects (NQEs) on the phase transitions were quantitatively evaluated from the difference in the phase transition pressures between the NQEs-incorporated and classical simulations. In this study, the quantum thermal bath (QTB) method was used for incorporating the NQEs. The constructed phase diagrams verified that the NQEs lower the phase transition temperatures and pressures. The NQEs are more significant at lower temperatures but cannot be ignored even at room temperature. The phase diagram in the QTB-based MLPMD is in good agreement with those of the previous studies based on dielectric measurements and path-integral based simulations. The displacement distributions of Ti and O ions in the QTB-MLPMD suggest that the pressure-induced tetragonal-cubic phase transition is the displacive type, in contrast to the order-disorder type reported in the literature. Possible reasons for the discrepancy in the microscopic behavior are the differences in the simulation cell size and restriction for lattice dynamics. In contrast to the relatively small simulation cell (12 × 12 × 12 supercell or smaller) with some restriction to the degrees of freedom (DOFs) for lattice dynamics in the previous studies, the large cell (20 × 20 × 20 supercell) without any DOF restriction was employed in the present study.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K Trachenko, B Monserrat, M Hutcheon, Chris J Pickard
{"title":"Upper bounds on the highest phonon frequency and superconducting temperature from fundamental physical constants.","authors":"K Trachenko, B Monserrat, M Hutcheon, Chris J Pickard","doi":"10.1088/1361-648X/adbc39","DOIUrl":"10.1088/1361-648X/adbc39","url":null,"abstract":"<p><p>Fundamental physical constants govern key effects in high-energy particle physics and astrophysics, including the stability of particles, nuclear reactions, formation and evolution of stars, synthesis of heavy nuclei and emergence of stable molecular structures. Here, we show that fundamental constants also set an upper bound for the frequency of phonons in condensed matter phases, or how rapidly an atom can vibrate in these phases. This bound is in agreement with<i>ab initio</i>simulations of atomic hydrogen and high-temperature hydride superconductors, and implies an upper limit to the superconducting transition temperatureTcin condensed matter. Fundamental constants set this limit to the order of 10<sup>2</sup>-10<sup>3</sup>K. This range is consistent with our calculations ofTcfrom optimal Eliashberg functions. As a corollary, we observe that the very existence of the current research of findingTcat and above 300 K is due to the observed values of fundamental constants. We finally discuss how fundamental constants affect the observability and operation of other effects and phenomena including phase transitions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143542342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Gholamhosseinian, M Modarresi, M R Roknabadi, A Mogulkoc
{"title":"Z2topological phase transition in twisted plumbene.","authors":"A Gholamhosseinian, M Modarresi, M R Roknabadi, A Mogulkoc","doi":"10.1088/1361-648X/adbaa5","DOIUrl":"10.1088/1361-648X/adbaa5","url":null,"abstract":"<p><p>Since the discovery of superconductivity in twisted bilayer graphene, which initiated the field of twistronics, Moiré patterns caused by different twisting angles between stacked layers of van der Waals 2D materials show unique properties in these structures. In the present study, we examine the band structures at various rotation angles within the density functional theory framework to analyze the dependence of electronic and topological properties on the twisting angle in twisted bilayer plumbene structures. The results indicate the potential for a phase transition in the plumbene bilayer, where it can transition from a trivial insulator to a conductor. Furthermore, plumbene may exhibit characteristics of a topological insulator (TI) under specific angles. This research contains both TI and conductor structures. Our study suggests an intriguing possibility for changes in electronic and topological properties in this two-dimensional material, which can have potential applications in spintronic devices.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hajime Kimizuka, Shigenobu Ogata, Bo Thomsen, Motoyuki Shiga
{"title":"<i>Ab initio</i>path-integral simulations of hydrogen-isotope diffusion in face-centred cubic metals.","authors":"Hajime Kimizuka, Shigenobu Ogata, Bo Thomsen, Motoyuki Shiga","doi":"10.1088/1361-648X/adc060","DOIUrl":"https://doi.org/10.1088/1361-648X/adc060","url":null,"abstract":"<p><p>Lighter isotopes typically diffuse faster than heavier isotopes; however, the case is not necessarily true for H. Predicting the kinetics of H isotope transport and reactions in substances remains a fundamental challenge in material and condensed matter physics. The peculiar experimentally observed isotope effect on H diffusivities in face-centred cubic (fcc) metals has long been an unresolved problem. Using an<i>ab initio</i>path-integral approach to explore the quantum mechanical nature of both electrons and nuclei, this study successfully predicts H isotope diffusivities in fcc Pd over a wide temperature range. The temperature dependence of the diffusivities follows an unusual `reversed-S' shape on Arrhenius plots. This irregular behaviour, arising from the competition between different nuclear quantum effects (NQEs) with different temperature dependencies, reveals the mechanism of anomalous crossovers between normal and reversed isotope effects. The results illustrate that this phenomenon is common in other fcc metals (e.g., Cu and Ag), where H atoms prefer to occupy octahedral (O) sites. Conversely, in Al, where H atoms prefer to occupy tetrahedral (T) sites, the dependence of H diffusivities on temperature exhibits a familiar `C' shape. A lattice expansion of approximately 1-2% causes the stable position of H atoms dissolved in Pd to shift from the O to T sites, and H diffusion in expanded Pd is no longer suppressed by NQEs, as observed in Al. This finding has important implications for interpreting kinetic processes involving the crossover from classical to quantum behaviour of H atoms moving between different interstitial sites. Path-integral simulation results describing the approximate quantum dynamics of the Pd-H system, using a machine-learning-based interatomic potential with accuracy similar to the density functional theory calculations, are presented. This computational approach paves the way for elucidating the quantum behaviour of H isotopes in various materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frustration-induced skyrmion crystals in centrosymmetric magnets.","authors":"Hikaru Kawamura","doi":"10.1088/1361-648X/adbf5b","DOIUrl":"https://doi.org/10.1088/1361-648X/adbf5b","url":null,"abstract":"<p><p>Recent theoretical and experimental studies on the frustration-induced skyrmion crystal (SkX) in centrosymmetric magnets are reviewed, with some emphasis on their symmetry and topological aspects. Special importance of frustration and chirality is highlighted. Theories cover the studies based on both the spin models and the electronic models. In the former, the frustrated Heisenberg models on the triangular or the square lattices interacting either via the long-range RKKY interaction or via the competing short-range exchange interactions are treated, where frustration is borne by the oscillating nature of the long-range RKKY interaction or by the competition between the shorter-range exchange interactions. Special attention is paid to the role played by the magnetic anisotropy including the dipolar interaction. The electronic models discussed are mainly the Kondo lattice model on the triangular lattice, which reduces to the RKKY Heisenberg in the weak-coupling limit. Experiments on centrosymmetric SkX-hosting magnets cover the hexagonal magnets Gd$_2$PdSi$_3$ (triangular) and Gd$_3$Ru$_4$Al$_{12}$ (breathing kagome), and the tetragonal magnets GdRu$_2$Si$_2$ and EuAl$_4$. Various experimental data, including magnetization or susceptibility, specific heat, Hall resistivity, resonant magnetic $x$-ray scattering, neutron scattering, Lorentz transmission electron miscroscopy, etc are reviewed and discussed in conjunction with the theoretical results. The nature of a variety of phases surrounding the SkX phase in the phase diagram, many of which are of multiple-$q$ character, is also examined. Finally, some discussion is given about the physical origin of the centrosymmetric SkX formation, its unique features in comparison with the non-centrosymmetric SkX induced by the antisymmetric Dzaloshinskii-Moriya interaction, together with some open and challenging problems for the future.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Driving force of atomic ordering in Fe-Pt alloys, investigated by density functional theory and machine-learning interatomic potentials Monte Carlo simulations.","authors":"Tomoyuki Tsuyama, Takeshi Kaneshita, Akira Matsui, Kohei Ochiai, Hiroaki Tanaka, Ryohei Kondo, Takayuki Fukushima, Haruhisa Ohashi, Atsushi Hashimoto, Yoshishige Okuno, Jian-Gang Zhu","doi":"10.1088/1361-648X/adbba5","DOIUrl":"10.1088/1361-648X/adbba5","url":null,"abstract":"<p><p>We report the mechanisms of atomic ordering in Fe-Pt bimetallic alloys using density functional theory (DFT) and machine-learning interatomic potential Monte Carlo (MLIP-MC) simulations. We clarified that the formation enthalpy of the ordered phase was significantly enhanced by spin polarization compared to that of the disordered phase. Analysis of the density of states indicated that coherence in local potentials in the ordered phase brings energy gain over the disordered phase, when spin is considered. MLIP-MC simulations were performed to investigate the phase transition of atomic ordering at finite temperatures. The model trained using the DFT dataset with spin polarization exhibited quantitatively good agreement with previous experiments and thermodynamic calculations across a wide range of Pt compositions. In contrast, the model without spin significantly underestimated the transition temperature. Through this study, we clarified that spin polarization is essential for accurately accounting for the ordered phase in Fe-Pt bimetallic alloys, even above the Curie temperature, possibly because of the remaining short-range spin order.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}