{"title":"LDOS of electron pair and the role of the Pauli exclusion principle.","authors":"Tomasz M Rusin","doi":"10.1088/1361-648X/ad912f","DOIUrl":"10.1088/1361-648X/ad912f","url":null,"abstract":"<p><p>The local density of states (LDOS) for a pair of non-relativistic electrons, influenced by repulsive Coulomb forces, is expressed in term of one-dimensional integrals over Whittaker functions. The computation of the electron pair's LDOS relies on a two-particle Green's function (GF), a generalization of the one-particle GF applicable to a charged particle in an attractive Coulomb potential. By incorporating electron spins and considering the Pauli exclusion principle, the resulting LDOS consists of two components: one originating from an exchange-even two-particle GF and the other from an exchange-odd two-particle GF. The calculated LDOS reveals its dependence on both inter-electron distance and energy. The pseudo-LDOS, derived from the two-body contribution to the LDOS, is examined. This term ensures complete LDOS suppression at<i>r</i> = 0, exhibiting a limited spatial extent, and the reasons for its emergence are elucidated. It is shown that for energies exceeding the effective Hartree energy and inter-electron distances beyond the effective Bohr radius, the impact of many-body contributions to the LDOS can be disregarded. The induced LDOS for an electron pair subjected to an attractive contact potential in two dimensions is evaluated. At small distances<i>a</i>from the potential center, a predicted relative difference in LDOS between even and odd state pair reaches approximately 8%. The calculated LDOS is compared with available experimental findings from a two-dimensional electron gas (2DEG). Both exhibit similar oscillation periods; however, the LDOS of the electron pair decays as1/a3, significantly faster than the1/adecay observed for free electrons in a 2DEG.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Binek, Syed Qamar Abbas Shah, Balamurugan Balasubramanian
{"title":"Thermodynamics and entropic inference of nanoscale magnetic structures in Gd.","authors":"Christian Binek, Syed Qamar Abbas Shah, Balamurugan Balasubramanian","doi":"10.1088/1361-648X/ad92ee","DOIUrl":"10.1088/1361-648X/ad92ee","url":null,"abstract":"<p><p>A bulk gadolinium (Gd) single crystal exhibits virtually zero remnant magnetization, a common trait among soft uniaxial ferromagnets. This characteristic is reflected in our magnetometry data showing virtually hysteresis free isothermal magnetization loops with large saturation magnetization. The absence of hysteresis allows to model the measured easy axis magnetization as a function of temperature and applied magnetic field, rather than a relation, which permits the application of Maxwell relations from equilibrium thermodynamics. Demagnetization effects broaden the isothermal first-order transition from negative to positive magnetization. By analyzing magnetization data within the coexistence regime, we deduce the isothermal entropy change and the field-induced heat capacity change. Comparing the numerically inferred heat capacity with relaxation calorimetric data confirms the applicability of the Maxwell relation. Analysis of the entropy in the mixed phase region suggests the presence of hitherto unresolved nanoscale magnetic structures in the demagnetized state of Gd. To support this prediction, Monte Carlo simulations of a 3D Ising model with dipolar interactions are performed. Analyzing the cluster size statistics and magnetization from the model provides strong qualitative support of our analytic approach.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pooja Kesarwani, Santosh K Khetan, B Ojha, R J Choudhary, V R Reddy, Subhankar Bedanta, P S Anil Kumar, Chanchal Sow
{"title":"Impact of Cr doping on Hall resistivity and magnetic anisotropy in SrRuO<sub>3</sub>thin films.","authors":"Pooja Kesarwani, Santosh K Khetan, B Ojha, R J Choudhary, V R Reddy, Subhankar Bedanta, P S Anil Kumar, Chanchal Sow","doi":"10.1088/1361-648X/ad9212","DOIUrl":"10.1088/1361-648X/ad9212","url":null,"abstract":"<p><p>Hall effects, including anomalous and topological types, in correlated ferromagnetic oxides provide an intriguing framework to investigate emergent phenomena arising from the interaction between spin-orbit coupling and magnetic fields. SrRuO<sub>3</sub>is a widely studied itinerant ferromagnetic system with intriguing electronic and magnetic characteristics. The electronic transport of SrRuO<sub>3</sub>is highly susceptible to the defects (O/Ru vacancy, chemical doping, ion implantation), and interfacial strain. In this regard, we investigate the impact of Cr doping on the magnetic anisotropy and the Hall effect in SrRuO<sub>3</sub>thin films. The work encompasses a comprehensive analysis of the structural, spectroscopic, magnetic, and magnetotransport properties of Cr-doped SrRuO<sub>3</sub>films grown on SrTiO<sub>3</sub>(001) substrates. Cross-sectional transmission electron microscopy reveals a sharp and coherent interface between the layers. Notably, perpendicular magnetic anisotropy is preserved in doped films with thicknesses up to 113 nm. The resistivity exhibits a<i>T</i><sup>2</sup>dependence below the Curie temperature, reflecting the influence of disorder and correlation-induced localization effects. Interestingly, in contrast to the undoped parent compound SrRuO<sub>3</sub>, an anomaly in the Hall signal has been observed up to a large thickness (56 nm) attributed to the random Cr doping and Ru vacancy. Based on our measurements, a field-temperature (<i>H</i> - <i>T</i>) phase diagram of anomalous Hall resistivity is constructed.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gianluca Gubbiotti, Anjan Barman, Sam Ladak, Cristina Bran, Dirk Grundler, Michael Huth, Harald Plank, Georg Schmidt, Sebastiaan van Dijken, Robert Streubel, Oleksandr V Dobrovolskiy, Valerio Scagnoli, Laura J Heyderman, Claire Donnelly, Olav Hellwig, Lorenzo Fallarino, M Benjamin Jungfleisch, Alan Farhan, Nicolò Maccaferri, Paolo Vavassori, Peter Fischer, Riccardo Tomasello, Giovanni Finocchio, Rodolphe Clerac, Roberta Sessoli, Denys Makarov, Denis Sheka, Maciej Krawczyk, Rodolfo A Gallardo, Pedro Landeros, Massimiliano d'Aquino, Riccardo Hertel, Philipp Pirro, Florin Ciubotaru, Markus Becherer, Jack Gartside, Teruo Ono, Paolo Bortolotti, Amalio Fernàndez-Pacheco
{"title":"2025 Roadmap on 3D Nano-magnetism.","authors":"Gianluca Gubbiotti, Anjan Barman, Sam Ladak, Cristina Bran, Dirk Grundler, Michael Huth, Harald Plank, Georg Schmidt, Sebastiaan van Dijken, Robert Streubel, Oleksandr V Dobrovolskiy, Valerio Scagnoli, Laura J Heyderman, Claire Donnelly, Olav Hellwig, Lorenzo Fallarino, M Benjamin Jungfleisch, Alan Farhan, Nicolò Maccaferri, Paolo Vavassori, Peter Fischer, Riccardo Tomasello, Giovanni Finocchio, Rodolphe Clerac, Roberta Sessoli, Denys Makarov, Denis Sheka, Maciej Krawczyk, Rodolfo A Gallardo, Pedro Landeros, Massimiliano d'Aquino, Riccardo Hertel, Philipp Pirro, Florin Ciubotaru, Markus Becherer, Jack Gartside, Teruo Ono, Paolo Bortolotti, Amalio Fernàndez-Pacheco","doi":"10.1088/1361-648X/ad9655","DOIUrl":"https://doi.org/10.1088/1361-648X/ad9655","url":null,"abstract":"<p><p>The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.
The roadmap comprises eighteen sections, roughly divided into three parts. The first section explores the fundamentals of 3D nanomagnetism, focusing on recent trends in fabrication techniques and imaging methods crucial for understanding complex spin textures, curved surfaces, and small-scale interactions. Techniques such as two-photon lithography and focused electron beam-induced deposition enable the creation of intricate 3D architectures, while advanced imaging methods like electron holography and Lorentz electron Ptychography provide sub-nanometer resolution for studying magnetization dynamics in three dimensions. Various 3D magnetic systems, including coupled multilayer systems, artificial spin ice, magneto-plasmonic systems, topological spin textures, and molecular magnets, are discussed.
The second section introduces analytical and numerical methods for investigating 3D nanomagnetic structures and curvilinear systems, highlighting geometrically curved architectures, interconnected nanowire systems, and other complex geometries. Finite element methods are emphasized for capturing complex geometries, along with direct frequency domain solutions for addressing magnonic problems.
The final section focuses on 3D magnonic crystals and networks, exploring their fundamental properties and potential applications in magnonic circuits, memory, and spintronics. Computational approaches using 3D nanomagnetic systems and complex topological textures in 3D spintronics are highlighted for their potential to enable faster and more energy-efficient computing.
.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Meena, Amarjyoti Choudhury, Mohit Mudgal, Sonika Bagga, V K Tiwari, Sarita Rajput, C S Yadav, Vivek Kumar Malik, T Maitra, Jayita Nayak
{"title":"Exploration of quantum oscillation in antiferromagnetic Weyl semimetal GdSiAl.","authors":"Priyanka Meena, Amarjyoti Choudhury, Mohit Mudgal, Sonika Bagga, V K Tiwari, Sarita Rajput, C S Yadav, Vivek Kumar Malik, T Maitra, Jayita Nayak","doi":"10.1088/1361-648X/ad912e","DOIUrl":"10.1088/1361-648X/ad912e","url":null,"abstract":"<p><p>GdSiAl single crystal has been investigated by means of magnetic and magneto-transport measurements and compared with<i>ab-initio</i>density functional theory (DFT) calculations. Significant non-saturating magnetoresistance reaching∼18%at 12T and2Kwas observed, alongside the presence of Shubnikov-de Haas oscillations with the fundamental frequencies 22.09T and 77.33T. Shubnikov-de Haas oscillations provide the information about the nontrivial<i>π</i>Berry phase in GdSiAl with the Fermi surface areas of0.00211A˚-2and0.00739A˚-2. Angle-dependent magnetoresistance shows anisotropy with<i>θ</i>, exhibiting a maximum at 180°. The magnetic susceptibility data forH∥candH⊥creveals that the magnetic moments of Gd<sup>3+</sup>ions orders antiferromagnetically below 32K along with an another transition occurs at∼8K, which is consistent with the heat capacity measurements where a distinct<i>λ</i>-shaped anomaly has been observed near antiferromagnetic ordering temperature 32K. The high value of Debye temperature indicates the contribution of acoustic phonons. Electronic structure calculations suggest the existence of nested Fermi surface pockets characterized by nesting wave vectors that closely align with the observed magnetic ordering wave vector. Furthermore, DFT calculations reveal the presence of Weyl nodes in close proximity to the Fermi surface. Our findings from combined experimental and theoretical techniques indicate GdSiAl to be a potential candidate for an antiferromagnetic topological Weyl semimetal.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thickness-dependent structural and growth evolution in relation to dielectric relaxation behavior and correlated barrier hopping conduction mechanism in Ni<sub>0.5</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>ferrite thin films.","authors":"Somnath Sahu, Shashi Priya Balmuchu, Pamu Dobbidi","doi":"10.1088/1361-648X/ad92d5","DOIUrl":"10.1088/1361-648X/ad92d5","url":null,"abstract":"<p><p>Ferrite thin films are explored due to their promising properties, which are essential in various advanced electronic devices. However, depositing a film with pure phase and uniform microstructure is challenging. The Ni<sub>0.5</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>ferrite thin films are deposited using pulsed laser deposition technique to explore the effect of thickness on structural properties, growth evolution, temperature-dependent dielectric behavior, and conduction mechanisms. Microstructural analysis revealed that the films are uniformly grown, exhibiting surface roughness ranging from ∼2 to 4 nm. The dielectric response, adhering to a modified Debye model, exhibited multiple relaxation processes, with notable changes in the dielectric constant and loss as film thickness increased. Impedance spectra exhibited both space charge and dipolar relaxation phenomena, corroborated by Cole-Cole and electrical modulus plots. The analysis of the imaginary electric modulus using the Kohlrausch-Williams-Watts function revealed non-Debye-type relaxation in all deposited films, characterized by thermally activated broad peaks. Conductivity decreased up to a certain film thickness, and the frequency exponent derived from Jonscher's power law suggested a correlated barrier hopping model for AC conduction. Activation energies improved with film thickness up to 125 nm, consistent with a constant energy barrier for polarons during relaxation and conduction phases. The film with 125 nm thickness exhibited the optimal dielectric properties, with the maximum dielectric constant, minimum dielectric loss, and highest activation energy. These findings highlight the potential of dense, uniformly grown films with high dielectric constants and low dielectric losses for advanced electronic device applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative Eliashberg theory of the superconductivity of thin films.","authors":"Giovanni Alberto Ummarino, Alessio Zaccone","doi":"10.1088/1361-648X/ad92ed","DOIUrl":"10.1088/1361-648X/ad92ed","url":null,"abstract":"<p><p>A quantitative theory of the superconductivity of materials confined at the nanoscale in parameter-free agreement with experimental data has been missing so far. We present a generalization, in the Eliashberg framework, of a BCS theory of superconductivity in good metals which are confined along one of the three spatial directions, such as thin films. In this formulation of the Eliashberg equations the approximation of taking the normal density of states as its value at the Fermi level has been removed. By numerically solving these new Eliashberg-type equations, we find the dependence of the superconducting critical temperatureTcon the confinement size<i>L</i>, in quantitative agreement with experimental data of Pb and Al thin films with no adjustable parameters. This quantitative agreement provides an indirect confirmation that, upon increasing the confinement, a crossover from a spherical-like Fermi surface, which contains two growing hole pockets caused by the confinement, to a strongly deformed Fermi surface, occurs. This topology of the Fermi sea is implemented in the new Eliashberg-type equations to reproduce the experimentally observed maximum in the critical superconducting temperature vs film thickness of ultra-thin Pb films.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase behavior and atomic dynamics in Rb<sub><i>x</i></sub>Na<sub>1-<i>x</i></sub>: insights from machine learning interatomic potentials based on<i>ab initio</i>molecular dynamics.","authors":"A Irie, A Koura, K Shimamura, F Shimojo","doi":"10.1088/1361-648X/ad9071","DOIUrl":"10.1088/1361-648X/ad9071","url":null,"abstract":"<p><p>Liquid alkali metal alloys have garnered significant attention because of their potential applications in coolant systems and batteries, driven by the need for environmental conservation and technological development. However, research on these complex systems is limited, necessitating a deeper understanding to ensure their safe and effective utilization. This study presents a comprehensive investigation of the factors that determine the phase diagram of Rb<sub><i>x</i></sub>Na1-x. By reproducing the experimental results using the thermodynamic integration method and machine learning interatomic potentials based on<i>ab initio</i>molecular dynamics simulations, we uncovered the delicate balance between the energy and entropy contributions that influence the phase stability of these liquid metal alloys. Further analysis of the liquid phase revealed the crucial roles of volume and atomic mass. Additionally, the coordination numbers of the atoms revealed distinct clustering behaviors, where Na atoms tended to avoid proximity to other Na atoms, whereas Rb atoms exhibited a strong tendency to cluster together. Moreover, the diffusion dynamics further illustrated the asymmetry in the behavior of Rb and Na, with Rb showing increased diffusion at higher concentrations and Na exhibiting higher diffusion at lower concentrations. These findings offer significant insights into the phase stability and the dynamic and structural properties of these complex liquid metal alloys.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interface phonon transport in nanomaterials: numerical methods and modulation strategies.","authors":"Yuan Yao, Hao Chen, Zhong-Ke Ding, Wei-Hua Xiao, Nannan Luo, Jiang Zeng, Li-Ming Tang, Ke-Qiu Chen","doi":"10.1088/1361-648X/ad9210","DOIUrl":"10.1088/1361-648X/ad9210","url":null,"abstract":"<p><p>The thermal properties of interfaces in nanomaterials are critical for various technological applications, including thermal management in electronic and photonic devices, thermoelectric conversion and thermal insulation. Recent advancements in numerical simulation tools (the non-equilibrium Green's approach, the Boltzmann transport equation and the Monte Carlo method, molecular dynamics simulations) have significantly enhanced our understanding of phonon transport and scattering processes in nanomaterials. These advances have led to the discovery of new thermal interfacial materials and enabled precise modulation of phonon thermal conductance to achieve desired thermal performance. This review summarizes recent research progress in interface thermal transport, focusing on intriguing heat phenomena such as finite size effect and phonon coherent property. Additionally, it discusses strategies for modulating thermal conductance through disorder and roughness. Finally, the review proposes the opportunities and challenges associated with modulating interface thermal transport.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ba-Hieu Vu, Ha Thi Dang, Van-Hai Dinh, Le Van Lich
{"title":"Enhanced energy storage performance in BaZr<sub><i>x</i></sub>Ti<sub>1-<i>x</i></sub>O<sub>3</sub>lead-free ferroelectrics near phase transitions.","authors":"Ba-Hieu Vu, Ha Thi Dang, Van-Hai Dinh, Le Van Lich","doi":"10.1088/1361-648X/ad9211","DOIUrl":"10.1088/1361-648X/ad9211","url":null,"abstract":"<p><p>The present study explores the energy storage properties of BaZr<sub><i>x</i></sub>Ti1-xO<sub>3</sub>through phase-field modeling, focusing on the impact of composition and temperature on energy storage performance. The obtained results reveal a variety of polarization phases and configurations based on Zr compositions and temperatures. A detailed phase diagram for temperature-composition of BaZr<sub><i>x</i></sub>Ti1-xO<sub>3</sub>is established, closely aligning with experimental measurements. Variations in Zr content and temperature have a significant impact on the polarization-electric field (<i>P</i> - <i>E</i>) response, influencing the energy storage properties. Calculations of energy storage properties are derived from the<i>P</i> - <i>E</i>response. In addition, a thorough diagram is developed to illustrate the discharge energy density of BaZr<sub><i>x</i></sub>Ti1-xO<sub>3</sub>as a function of temperature and composition. Notably, high discharge energy density is achievable near the Curie temperature, corresponding to the transition from ferroelectric to paraelectric phase. Furthermore, the present study emphasizes the importance of the disparity between maximum and remanent polarization, as well as the electric field-dependent effective permittivity, in determining the discharge energy density.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}