周期性无机固体的结构手性及其相关性质:综述与展望。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Eric Bousquet, Mauro Fava, Zachary Romestan, Fernando Gómez-Ortiz, Emma E McCabe, Aldo H Romero
{"title":"周期性无机固体的结构手性及其相关性质:综述与展望。","authors":"Eric Bousquet, Mauro Fava, Zachary Romestan, Fernando Gómez-Ortiz, Emma E McCabe, Aldo H Romero","doi":"10.1088/1361-648X/adb674","DOIUrl":null,"url":null,"abstract":"<p><p>Chirality refers to the asymmetry of objects that cannot be superimposed on their mirror image. It is a concept that exists in various scientific fields and has profound consequences. Although these are perhaps most widely recognized within biology, chemistry, and pharmacology, recent advances in chiral phonons, topological systems, crystal enantiomorphic materials, and magneto-chiral materials have brought this topic to the forefront of condensed matter physics research. Our review discusses the symmetry requirements and the features associated with structural chirality in inorganic materials. This allows us to explore the nature of phase transitions in these systems, the coupling between order parameters, and their impact on the material's physical properties. We highlight essential contributions to the field, particularly recent progress in the study of chiral phonons, altermagnetism, magnetochirality between others. Despite the rarity of naturally occurring inorganic chiral crystals, this review also highlights a significant knowledge gap, presenting challenges and opportunities for structural chirality mostly at the fundamental level, e.g. chiral displacive phase transitions, possibilities of tuning and switching structural chirality by external means (electric, magnetic, or strain fields), whether chirality could be an independent order parameter, and whether structural chirality could be quantified, etc. Beyond simply summarizing this field of research, this review aims to inspire further research in materials science by addressing future challenges, encouraging the exploration of chirality beyond traditional boundaries, and seeking the development of innovative materials with superior or new properties.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural chirality and related properties in periodic inorganic solids: review and perspectives.\",\"authors\":\"Eric Bousquet, Mauro Fava, Zachary Romestan, Fernando Gómez-Ortiz, Emma E McCabe, Aldo H Romero\",\"doi\":\"10.1088/1361-648X/adb674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chirality refers to the asymmetry of objects that cannot be superimposed on their mirror image. It is a concept that exists in various scientific fields and has profound consequences. Although these are perhaps most widely recognized within biology, chemistry, and pharmacology, recent advances in chiral phonons, topological systems, crystal enantiomorphic materials, and magneto-chiral materials have brought this topic to the forefront of condensed matter physics research. Our review discusses the symmetry requirements and the features associated with structural chirality in inorganic materials. This allows us to explore the nature of phase transitions in these systems, the coupling between order parameters, and their impact on the material's physical properties. We highlight essential contributions to the field, particularly recent progress in the study of chiral phonons, altermagnetism, magnetochirality between others. Despite the rarity of naturally occurring inorganic chiral crystals, this review also highlights a significant knowledge gap, presenting challenges and opportunities for structural chirality mostly at the fundamental level, e.g. chiral displacive phase transitions, possibilities of tuning and switching structural chirality by external means (electric, magnetic, or strain fields), whether chirality could be an independent order parameter, and whether structural chirality could be quantified, etc. Beyond simply summarizing this field of research, this review aims to inspire further research in materials science by addressing future challenges, encouraging the exploration of chirality beyond traditional boundaries, and seeking the development of innovative materials with superior or new properties.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adb674\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb674","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

手性指的是物体的不对称性,它们不能叠加在镜像上。这是一个存在于各个科学领域并具有深远影响的概念。尽管这些可能在生物学、化学和药理学中得到最广泛的认可,但最近在手性声子、拓扑系统、晶体对构材料和磁手性材料方面的进展使这一主题成为凝聚态物理研究的前沿。本文讨论了无机材料的对称性要求和与结构手性相关的特征。这使我们能够探索这些系统中相变的本质、有序参数之间的耦合以及它们对材料物理性能的影响。我们强调了对该领域的重要贡献,特别是最近在手性声子、交磁、手性等方面的研究进展。尽管天然存在的无机手性晶体非常罕见,但这篇综述也强调了一个重要的知识缺口,主要在基础水平上提出了结构手性的挑战和机遇,例如,手性位移相转变,通过外部手段(电场、磁场或应变场)调节和切换结构手性的可能性,手性是否可以是一个独立的顺序参数,结构手性是否可以量化等。除了简单总结这一领域的研究外,本综述旨在通过解决未来的挑战,鼓励超越传统界限的手性探索,以及寻求具有优越或新性能的创新材料的开发,来激发材料科学的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural chirality and related properties in periodic inorganic solids: review and perspectives.

Chirality refers to the asymmetry of objects that cannot be superimposed on their mirror image. It is a concept that exists in various scientific fields and has profound consequences. Although these are perhaps most widely recognized within biology, chemistry, and pharmacology, recent advances in chiral phonons, topological systems, crystal enantiomorphic materials, and magneto-chiral materials have brought this topic to the forefront of condensed matter physics research. Our review discusses the symmetry requirements and the features associated with structural chirality in inorganic materials. This allows us to explore the nature of phase transitions in these systems, the coupling between order parameters, and their impact on the material's physical properties. We highlight essential contributions to the field, particularly recent progress in the study of chiral phonons, altermagnetism, magnetochirality between others. Despite the rarity of naturally occurring inorganic chiral crystals, this review also highlights a significant knowledge gap, presenting challenges and opportunities for structural chirality mostly at the fundamental level, e.g. chiral displacive phase transitions, possibilities of tuning and switching structural chirality by external means (electric, magnetic, or strain fields), whether chirality could be an independent order parameter, and whether structural chirality could be quantified, etc. Beyond simply summarizing this field of research, this review aims to inspire further research in materials science by addressing future challenges, encouraging the exploration of chirality beyond traditional boundaries, and seeking the development of innovative materials with superior or new properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信