{"title":"Circularly polarized radiation to control the superconducting states: stability analysis.","authors":"M D Croitoru, A I Buzdin","doi":"10.1088/1361-648X/ad8a57","DOIUrl":"10.1088/1361-648X/ad8a57","url":null,"abstract":"<p><p>Recently, the use of circularly polarized radiation for on-demand switching between distinct quantum states in a superconducting nanoring exposed to half-quantum magnetic flux has been proposed. However, the effectiveness of this method depends on the system's stability against local variations in the superconducting characteristics of the ring and flux fluctuations. In this study, we utilize numerical simulations based on the time-dependent Ginzburg-Landau equation to evaluate the influence of these inevitable factors on the switching behavior. The results obtained demonstrate that the switching phenomena remain remarkably robust, providing confidence in their experimental observation.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Meena, Amarjyoti Choudhury, Mohit Mudgal, Sonika Bagga, Vishnu Kumar Tiwari, Sarita Rajput, C S Yadav, Vivek K Malik, Tulika Maitra, Jayita Nayak
{"title":"Exploration of quantum oscillation in antiferromagnetic Weyl semimetal GdSiAl.","authors":"Priyanka Meena, Amarjyoti Choudhury, Mohit Mudgal, Sonika Bagga, Vishnu Kumar Tiwari, Sarita Rajput, C S Yadav, Vivek K Malik, Tulika Maitra, Jayita Nayak","doi":"10.1088/1361-648X/ad912e","DOIUrl":"https://doi.org/10.1088/1361-648X/ad912e","url":null,"abstract":"<p><p>GdSiAl single crystal has been investigated by means of magnetic and magneto-transport measurements and compared with ab-initio density functional theory (DFT) calculations. Significant non-saturating magnetoresistance reaching ∼ 18% at 12T and 2K was observed, alongside the presence of Shubnikov-de Haas oscillations with the fundamental frequencies 22.09T and 77.33T. Shubnikov-de Haas oscillations provide the information about the nontrivial π Berry phase in GdSiAl with the Fermi surface areas of 0.00211 Å<sup>-2</sup>and 0.00739 Å<sup>-2</sup>. Angle-dependent magnetoresistance shows anisotropy with θ, exhibiting a maximum at 180<sup>°</sup>. The magnetic susceptibility data for H ∥ c and H ⊥ c reveals that the magnetic moments of Gd<sup>3+</sup>ions orders antiferromagnetically below 32K along with an another transition occurs at ∼ 8K, which is consistent with the heat capacity measurements where a distinct λ-shaped anomaly has been observed near antiferromagnetic ordering temperature 32K. The high value of Debye temperature indicates the contribution of acoustic phonons. Electronic structure calculations suggest the existence of nested Fermi surface pockets characterized by nesting wave vectors that closely align with the observed magnetic ordering wave vector. Furthermore, DFT calculations reveal the presence of Weyl nodes in close proximity to the Fermi surface. Our findings from combined experimental and theoretical techniques indicate GdSiAl to be a potential candidate for an antiferromagnetic topological Weyl semimetal.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photovoltaic effect in methylammonium lead triiodide single crystal.","authors":"Volodymyr Kapustianyk, Volodymyr Kolomiets, Yuriy Eliyashevskyy, Olesia Uhrynovych","doi":"10.1088/1361-648X/ad8b90","DOIUrl":"https://doi.org/10.1088/1361-648X/ad8b90","url":null,"abstract":"<p><p>Due to the crystalline acentricity leading to the bulk photovoltaic effect (PV) the ferroelectrics (FEs) are considered as important candidates for creation of the PV cells overcoming the Shockley-Queisser limit of semiconductors. However, this research direction still requires more investigations to develop reliable pathways for PV efficiency optimization. The recent progress in the power conversion efficiency of the cells based on the organic-based compounds such as CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>perovskite attracted much attention of the scientists. Unfortunately, manufacturing of these multilayer cells implies a very complicated technology and very high price of the devices. Under such circumstances investigations of the PV effect in the single crystals of FE perovskites look very promising. In this paper we report that due to the sample illumination with intensive UV light, CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>single crystal is transformed from the pristine antiFE into the FE state. As a result, the PV effect characteristic of the FEs is realized in this material. The theoretically maximal value of the power conversion efficiency in this case was found to be one of the largest among the single crystals of this class of ferroics. We also considered the ways allowing to increase the PV efficiency of the potential solar cells based on such materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 4","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological and site disorder in boron nitride networks.","authors":"Angus Heafield, Mark Wilson","doi":"10.1088/1361-648X/ad882d","DOIUrl":"10.1088/1361-648X/ad882d","url":null,"abstract":"<p><p>Amorphous boron nitride (a-BN) is modelled over a wide range of densities using a relatively simple potential model augmented with site charges. The local topology (defined, for example, through the total nearest-neighbour coordination number), appears near-constant across a wide range of densities and site charges. Furthermore,<i>total</i>scattering and<i>total</i>pair distribution functions also show few changes as a function of either density or site charge. Variation of the site charges directly controls the level of site (rather than topological) disorder meaning that although total pair functions may be near-constant, the underlying partial contributions may be very different. Direct contact is made with both experiment and (more recent) density-functional theory-based modelling work.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluids with power-law repulsion: Hyperuniformity and energy fluctuations.","authors":"Haim Diamant, Erdal C Oguz","doi":"10.1088/1361-648X/ad912d","DOIUrl":"https://doi.org/10.1088/1361-648X/ad912d","url":null,"abstract":"<p><p>We revisit the equilibrium statistical mechanics of a classical fluid of point-like particles with repulsive power-law pair interactions, focusing on density and energy fluctuations at finite temperature. Such long-range interactions, decaying with inter-particle distance $r$ as $1/r^s$ in $d$ dimensions, are known to fall into two qualitatively different categories. For $s<d$ (``strongly\" long-range interactions) there are screening of correlations and suppression of large-wavelength density fluctuations (hyperuniformity). These effects eliminate density modes with arbitrarily large energy. For $s>d$ (``weakly\" long-range interactions) screening and hyperuniformity do not occur. Using scaling arguments, variational analysis, and Monte Carlo simulations, we find another qualitative distinction. For $sgeq d/2$ the strong repulsion at short distances leads to enhanced small-wavelength density fluctuations, decorrelating particle positions. This prevents indefinitely negative entropy and large energy fluctuations. The distinct behaviors for $sgeq d/2$ and $s<d/2$ give rise to qualitatively different dependencies of the entropy, heat capacity, and energy fluctuations on temperature and density. We investigate the effect of introducing an upper cutoff distance in the pair-potential. The effect of the cutoff on energy fluctuations is strong for $s<d/2$ and negligible for $s geq d/2$.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia
{"title":"Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids.","authors":"Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia","doi":"10.1088/1361-648X/ad899c","DOIUrl":"10.1088/1361-648X/ad899c","url":null,"abstract":"<p><p>Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intergrain scattering in polycrystals.","authors":"George Edwin Cragg","doi":"10.1088/1361-648X/ad7dc6","DOIUrl":"10.1088/1361-648X/ad7dc6","url":null,"abstract":"<p><p>Transport through grain boundaries in polycrystals is described from first principles using quantum scattering theory, explicitly including Feshbach resonances to account for intermittently trapped electronic surface states. An effective<i>T</i>-matrix is derived then used to calculate the electrical conductivity which exhibits breakdown, a sharp increase at a critical intergrain bias. Under typical conditions where the electron thermal energy,kBT, is much less than the intergrain barrier height,φb, the electrical conductivity has the formσ∼T-1/2e-φb/kBT. Temperature dependence of the conductivity is also considered for thermal energies much larger than the applied bias, as may be realized in tightly-compressed grains.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic states bound by repulsive potentials in graphene irradiated by a circularly polarized electromagnetic field.","authors":"O V Kibis, M V Boev, I V Iorsh, V M Kovalev","doi":"10.1088/1361-648X/ad88c5","DOIUrl":"10.1088/1361-648X/ad88c5","url":null,"abstract":"<p><p>In the framework of the Floquet theory of periodically driven quantum systems, it is demonstrated that irradiation of graphene by a circularly polarized electromagnetic field induces an attractive area in the core of repulsive potentials. Consequently, the quasi-stationary electron states bound by the repulsive potentials appear. The difference between such field-induced states in graphene and usual systems with the parabolic dispersion of electrons is discussed and possible manifestations of these states in electronic transport and optical spectra of graphene are considered.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in understanding and manipulating magnetic and electronic properties of Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>(<i>M</i>= Zn, Cd;<i>X</i>= P, As).","authors":"Xiyu Chen, Shuai Dong, Zhi-Cheng Wang","doi":"10.1088/1361-648X/ad882b","DOIUrl":"10.1088/1361-648X/ad882b","url":null,"abstract":"<p><p>Over the past five years, significant progress has been made in understanding the magnetism and electronic properties of CaAl<sub>2</sub>Si<sub>2</sub>-type Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>(<i>M</i>= Zn, Cd;<i>X</i>= P, As) compounds. Prior theoretical work and experimental studies suggested that EuCd<sub>2</sub>As<sub>2</sub>had the potential to host rich topological phases, particularly an ideal magnetic Weyl semimetal state when the spins are polarized along the<i>c</i>axis. However, this perspective is challenged by recent experiments utilizing samples featuring ultra-low carrier densities, as well as meticulous calculations employing various approaches. Nonetheless, the Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>family still exhibit numerous novel properties that remain to be satisfactorily explained, such as the giant nonlinear anomalous Hall effect and the colossal magnetoresistance effect. Moreover, Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>compounds can be transformed from semiconducting antiferromagnets to metallic ferromagnets by introducing a small number of carriers or applying external pressure, and a further increase in the ferromagnetic transition temperature can be achieved by reducing the unit cell volume. These features make the Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>family a fertile platform for studying the interplay between magnetism and charge transport, and an excellent candidate for applications in spintronics. This paper presents a comprehensive review of the magnetic and transport behaviors of Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>compounds with varying carrier densities, as well as the current insights into these characteristics. An outlook for future research opportunities is also provided.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho
{"title":"Theoretical insights into off-stoichiometric Zr<sub>(x)</sub>Ti<sub>(1-x)</sub>IrSb half-Heusler alloys: a first principle calculations.","authors":"Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho","doi":"10.1088/1361-648X/ad899b","DOIUrl":"10.1088/1361-648X/ad899b","url":null,"abstract":"<p><p>This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(<i>x</i>= 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1) compounds. Using first-principles calculations, we explore how varying Zr and Ti concentrations can tune the electronic and optical properties of these half-Heusler alloys. The Structural, optical, and electronic properties were meticulously analyzed with both the GGA-PBE and Meta-GGA-SCAN approximations, as implemented in the Vienna<i>Ab initio</i>Simulation Package (VASP). The dynamical stability of these compounds was assessed using the Phonopy package. Our findings reveal that these alloys exhibit semiconductor behavior with tunable band gaps, and their optical properties show significant variation across different compositions, particularly in the visible light range. The compounds also demonstrate robust dynamical stability, indicating their potential for practical applications in electronic and optoelectronic devices. These results underscore the versatility ofZrxTi1-xIrSballoys and highlight their promise for next-generation technology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}