Arthur Krindges, Carlos Alberto Morais, Mateus Schmidt, Fabio M Zimmer
{"title":"Pairing phase favored by magnetic frustration.","authors":"Arthur Krindges, Carlos Alberto Morais, Mateus Schmidt, Fabio M Zimmer","doi":"10.1088/1361-648X/ad922b","DOIUrl":"https://doi.org/10.1088/1361-648X/ad922b","url":null,"abstract":"<p><p>The interplay between magnetic frustration and pairing is investigated by adopting a BCS-like pairing mechanism on the frustrated $J_1-J_2$ Ising model on the square lattice. The ground-state and thermal phase transitions of the model are analyzed using a fermionic formulation within a cluster mean-field method. In this approach, the lattice system is divided into identical clusters, where the intracluster dynamic is exactly solved, and the intercluster interactions are replaced by self-consistent mean fields. We introduce a framework with two pairing couplings: an intracluster local coupling, $g$, which controls the electron pairing and its mobility within the clusters, and an intercluster coupling, $g'$, which adjusts the pairing mechanism between clusters. Tuning $g'/g$ allows evaluating how the pairing phase evolves from a weak pairing coupling between clusters (clustered system) to a strong one ($g' rightarrow g$, homogeneous system). In the range $0 le g'/g le 1$, we find that a gradual increase in $g'/g$ favors the pairing phase and induces a change in criticality. In particular, our results reveal the presence of tricriticality for a certain range of $g'/g$. In addition, an increase in competing magnetic interactions weakens the magnetic orders, causing the pairing phase to occur at lower strengths of pairing interactions, especially when $g' = g$. Therefore, our findings support that magnetic frustration favors the pairing phase, contributing to the onset of a superconducting state.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Composite quadrupole order in ferroic and multiferroic materials.","authors":"R Matthias Geilhufe","doi":"10.1088/1361-648X/ad8ea3","DOIUrl":"10.1088/1361-648X/ad8ea3","url":null,"abstract":"<p><p>The formalism of composite and intertwined orders has been remarkably successful in discussing the complex phase diagrams of strongly correlated materials and high-<i>T<sub>c</sub></i>superconductors. Here, we propose that composite orders are also realized in ferroelectric and ferromagnetic materials when lattice anisotropy is taken into account. This composite order emerges above the ferroic phase transition, and its type is determined by the easy axis of magnetization or polarization, respectively. In multiferroic materials, where polarization and magnetization are coupled, composites of both orders are possible. This formalism of composite orders naturally accounts for magnetoelectric monopole, toroidal, and quadrupole orders. More broadly, composite orders may explain precursor phenomena in incipient ferroic materials, arising at temperatures above the ferroic phase transition and potentially contributing to the characterization of currently hidden orders.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Charge transfer induced phase transition in Li<sub>2</sub>MnO<sub>3</sub>at high pressure.","authors":"Ajinkya P Khangal, Nishant N Patel, Ajay K Mishra","doi":"10.1088/1361-648X/ad8b8f","DOIUrl":"10.1088/1361-648X/ad8b8f","url":null,"abstract":"<p><p>Efficient and better energy storage materials are of utmost technological importance to reduce energy dependence on the fossil fuels. Li<sub>2</sub>MnO<sub>3</sub>is one such material having potential to meet most of the requirements for energy storage. This material has been synthesized using solid state synthesis route. High pressure structural and vibrational studies on this material have been carried out upto ∼22 and 26 GPa respectively. These investigations show occurrence of a hitherto unknown second order phase transition to a new low symmetry phase whose symmetry is constrained to be monoclinic with space group P2<sub>1</sub>/n at pressure of ∼2.3 GPa in Li<sub>2</sub>MnO<sub>3</sub>. The bulk modulus and its derivative determined by fitting the<i>P-V</i>data with third order Birch-Murnaghan equation of state are 113.3 ± 13.1 GPa and 4.1 ± 1.2 respectively. Mode Grüneisen parameter calculated for all the Raman modes show positive values which indicates the absence of any soft mode in this material. A microscopic mechanism based on bond-charge transfer is invoked and applied to understand the spectroscopic changes occurring in this material which also manifests second order structural phase transition. Enhancement in covalent character of Li-O bonds in the Li-O polyhedra is inferred based on the spectroscopic observation and above mechanism.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruthi Zielinski, Nhat Nguyen, Bryce Herrington, Amir Tarkian, Omar Taha, Wai Kiat Chin, Ather Mahmood, Xiaoqian Chen, Christoph Klewe, Padraic Shafer, Jim Ciston, Paul Ashby, Claudio Mazzoli, Robert Streubel
{"title":"Magnetic order in nanogranular iron germanium (Fe<sub>0.53</sub>Ge<sub>0.47</sub>) films.","authors":"Ruthi Zielinski, Nhat Nguyen, Bryce Herrington, Amir Tarkian, Omar Taha, Wai Kiat Chin, Ather Mahmood, Xiaoqian Chen, Christoph Klewe, Padraic Shafer, Jim Ciston, Paul Ashby, Claudio Mazzoli, Robert Streubel","doi":"10.1088/1361-648X/ad8c0a","DOIUrl":"10.1088/1361-648X/ad8c0a","url":null,"abstract":"<p><p>We study the effect of strain on the magnetic properties and magnetization configurations in nanogranular Fe<sub><i>x</i></sub>Ge1-xfilms (x=0.53±0.05) with and without B20 FeGe nanocrystals surrounded by an amorphous structure. Relaxed films on amorphous silicon nitride membranes reveal a disordered skyrmion phase while films near and on top of a rigid substrate favor ferromagnetism and an anisotropic hybridization of Fe<i>d</i>levels and spin-polarized Ge<i>sp</i>band states. The weakly coupled topological states emerge at room temperature and become more abundant at cryogenic temperatures without showing indications of pinning at defects or confinement to individual grains. These results demonstrate the possibility to control magnetic exchange and topological magnetism by strain and inform magnetoelasticity-mediated voltage control of topological phases in amorphous quantum materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dorota I Walicka, Olivier Blacque, Tomasz Klimczuk, Fabian O von Rohr
{"title":"From weak- to strong-coupling superconductivity in the AlB<sub>2</sub>-type solid solution SrGa<sub>1-<i>x</i></sub>Al<sub><i>x</i></sub>Ge with honeycomb layers.","authors":"Dorota I Walicka, Olivier Blacque, Tomasz Klimczuk, Fabian O von Rohr","doi":"10.1088/1361-648X/ad8c0b","DOIUrl":"10.1088/1361-648X/ad8c0b","url":null,"abstract":"<p><p>We report on the structure and the superconducting properties of 9-electron 111 compounds with honeycomb layers, namely SrGaGe, SrAlGe, and the SrGa1-xAl<sub><i>x</i></sub>Ge solid solution. By means of single-crystal x-ray diffraction we show that, on one hand, SrGaGe crystallizes into the centrosymmetric<i>P</i>6/<i>mmm</i>space group (<i>a</i>= 4.2555(2) Å,<i>c</i>= 4.7288(2) Å) with statistical disorder in the [GaGe]62-honeycomb layers. On the other hand, we confirm that SrAlGe crystallizes in a non-centrosymmetric space group, namely<i>P</i>6¯<i>m2</i>(<i>a</i>= 4.2942(1) Å,<i>c</i>= 4.7200(2) Å) with fully ordered [AlGe]62-honeycomb layers. By using magnetization and specific heat measurements, we show that the superconducting properties of SrGaGe and SrAlGe differ significantly from each other. SrGaGe is a superconductor with a critical temperature ofTc= 2.6 K falling into the weak coupling limit, while SrAlGe has aTc= 6.7 K and can be classified in the strong coupling limit. By realizing the SrGa1-xAl<sub><i>x</i></sub>Ge solid solution, we were able to investigate the transition between the different crystal structures as well as the evolution of the electronic properties. We show that the transition from the weak-to strong-coupling superconductivity in this system is likely associated with the disorder-to-order transition of the honeycomb layer, along with the loss of the inversion center in the crystal structure.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João V B Del Piero, Roberto H Miwa, Wanderlã L Scopel
{"title":"Vanadium incorporation in 2D-layered MoSe<sub>2</sub>.","authors":"João V B Del Piero, Roberto H Miwa, Wanderlã L Scopel","doi":"10.1088/1361-648X/ad8abb","DOIUrl":"10.1088/1361-648X/ad8abb","url":null,"abstract":"<p><p>Recent advances in experimental techniques have made it possible to manipulate the structural and electronic properties of two-dimensional layered materials (2DM) through interaction with foreign atoms. Using quantum mechanics calculations based on the density functional theory, we explored the dependency of the structural, energetic, electronic, and magnetic properties of the interaction between Vanadium (V) atoms and monolayer and bilayer MoSe<sub>2</sub>. Spin-polarized metallic behavior was observed for high V concentration, and a semiconductor/metal interface emerged due to V adsorption on top of BL MoSe<sub>2</sub>. Our research demonstrated that the functionalization of 2D materials makes an important contribution to the design of spintronic devices based on a 2D-layered materials platform.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometry, anomaly, topology, and transport in Weyl fermions.","authors":"Azaz Ahmad, Gautham Varma K, Gargee Sharma","doi":"10.1088/1361-648X/ad8ab9","DOIUrl":"10.1088/1361-648X/ad8ab9","url":null,"abstract":"<p><p>Weyl fermions are one of the simplest objects that link ideas in geometry and topology to high-energy physics and condensed matter physics. Although the existence of Weyl fermions as elementary particles remains dubious, there is mounting evidence of their existence as quasiparticles in certain condensed matter systems. Such systems are termed Weyl semimetals (WSMs). Needless to say, WSMs have emerged as a fascinating class of materials with unique electronic properties, offering a rich playground for both fundamental research and potential technological applications. This review examines recent advancements in understanding electron transport in WSMs. We begin with a pedagogical introduction to the geometric and topological concepts critical to understanding quantum transport in Weyl fermions. We then explore chiral anomaly, a defining feature of WSMs, and its impact on transport phenomena such as longitudinal magnetoconductance and planar Hall effect. The Maxwell-Boltzmann transport theory extended beyond the standard relaxation-time approximation is then discussed in the context of Weyl fermions, which is used to evaluate various transport properties. Attention is also given to the effects of strain-induced gauge fields and external magnetic fields in both time-reversal broken and inversion asymmetric inhomogeneous WSMs. The review synthesizes theoretical insights, experimental observations, and numerical simulations to provide a comprehensive understanding of the complex transport behaviors in WSMs, aiming to bridge the gap between theoretical predictions and experimental verification.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hot carrier transfer from plasmon decay in Ag<sub>20</sub>at H-Si(111) surface: real-time TDDFT simulation in Wannier gauge.","authors":"John L Bost, Christopher Shepard, Yosuke Kanai","doi":"10.1088/1361-648X/ad8b8e","DOIUrl":"10.1088/1361-648X/ad8b8e","url":null,"abstract":"<p><p>Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag<sub>20</sub>nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag<sub>20</sub>nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunable electronic and optical properties of BAs/InS heterojunction based on first-principles calculations.","authors":"Qianli Ma, Lei Ni, Duan Li, Yan Zhang","doi":"10.1088/1361-648X/ad8aba","DOIUrl":"10.1088/1361-648X/ad8aba","url":null,"abstract":"<p><p>The geometric structure, electronic properties, and optical characteristics of BAs/InS heterostructures are investigated in the present study through the first-principles calculations of Density Functional Theory. The analysis shows that H1-stacking BAs/InS heterostructures with an interlayer distance of 3.6 Å have excellent stability compared with monolayer materials. Furthermore, this heterostructure is classified as a Type-II heterostructure, which promotes the formation of photo-generated electron-hole pairs. The band alignment, direction and magnitude of electronic transfer in BAs/InS heterostructures can be fine-tuned by applying the external electric field and stress, which can also induce a transition from Type-II to Type-I behavior, the indirect bandgap to direct bandgap also occurs. Moreover, absorption coefficient of the heterostructure can also be moderately enhanced and adjusted by external electric fields and stress. These findings suggest that BAs/InS heterostructures have potential applications in photoelectric detectors and laser technology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LDOS of electron pair and the role of the Pauli exclusion principle.","authors":"Tomasz M Rusin","doi":"10.1088/1361-648X/ad912f","DOIUrl":"https://doi.org/10.1088/1361-648X/ad912f","url":null,"abstract":"<p><p>The local density of states (LDOS) for a pair of non-relativistic electrons, influenced by repulsive Coulomb forces, is expressed in term of one-dimensional integrals over Whittaker functions. The computation of the electron pair's LDOS relies on a two-particle Green's function (GF), a generalization of the one-particle GF applicable to a charged particle in an attractive Coulomb potential. By incorporating electron spins and considering the Pauli exclusion principle, the resulting LDOS consists of two components: one originating from an exchange-even two-particle GF and the other from an exchange-odd two-particle GF. The calculated LDOS reveals its dependence on both inter-electron distance and energy. The pseudo-LDOS, derived from the two-body contribution to the LDOS, is examined. This term ensures complete LDOS suppression at r = 0, exhibiting a limited spatial extent, and the reasons for its emergence are elucidated. It is shown that for energies exceeding the effective Hartree energy and inter-electron distances beyond the effective Bohr radius, the impact of manybody contributions to the LDOS can be disregarded. The induced LDOS for an electron pair subjected to an attractive contact potential in two dimensions is evaluated. At small distances a from the potential center, a predicted relative difference in LDOS between even and odd state pair reaches approximately 8%. The calculated LDOS is compared with available experimental findings from a two-dimensional electron gas (2DEG). Both exhibit similar oscillation periods; however, the LDOS of the electron pair decays as 1/a3, significantly faster than the 1/a decay observed for free electrons in a 2DEG.
.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}