Hui-Min Xu, Jiefeng Ye, Wen-Ti Guo, Yinhan Zhang, Jian-Min Zhang
{"title":"The electronic, stability and mechanical properties of the kagome lattice CsTi<sub>3</sub>Bi<sub>5</sub>under pressure: a first-principles study.","authors":"Hui-Min Xu, Jiefeng Ye, Wen-Ti Guo, Yinhan Zhang, Jian-Min Zhang","doi":"10.1088/1361-648X/adcdaf","DOIUrl":null,"url":null,"abstract":"<p><p>The kagome lattices of the<i>A</i>Ti<sub>3</sub>Bi<sub>5</sub>family have recently garnered significant attention due to their superconducting and topological properties. Here, we conducted an in-depth analysis of the band structure of the prototypical titanium-based kagome lattice material, CsTi<sub>3</sub>Bi<sub>5</sub>, using Density Functional Theory. We revealed its topological properties and demonstrated that the Van Hove singularities can be effectively tuned to the Fermi level under 18 GPa. Our findings confirm the dynamic stability of the CsTi<sub>3</sub>Bi<sub>5</sub>system and further demonstrate that its elastic constants, which comply with Born's criteria, ensure mechanical stability. The Poisson's ratio and Pugh's ratio indicate good ductility, while the material exhibits relatively low hardness. Notably, the mechanical properties exhibit significant directional anisotropy under all pressure conditions. As a key material in kagome lattices, the research results on CsTi<sub>3</sub>Bi<sub>5</sub>provide theoretical insights for experimental studies and the preparation of similar materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 20","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adcdaf","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The kagome lattices of theATi3Bi5family have recently garnered significant attention due to their superconducting and topological properties. Here, we conducted an in-depth analysis of the band structure of the prototypical titanium-based kagome lattice material, CsTi3Bi5, using Density Functional Theory. We revealed its topological properties and demonstrated that the Van Hove singularities can be effectively tuned to the Fermi level under 18 GPa. Our findings confirm the dynamic stability of the CsTi3Bi5system and further demonstrate that its elastic constants, which comply with Born's criteria, ensure mechanical stability. The Poisson's ratio and Pugh's ratio indicate good ductility, while the material exhibits relatively low hardness. Notably, the mechanical properties exhibit significant directional anisotropy under all pressure conditions. As a key material in kagome lattices, the research results on CsTi3Bi5provide theoretical insights for experimental studies and the preparation of similar materials.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.