Atif Suhail, Shivang Beniwal, Ramesh Kumar, Anjali Kumar, Monojit Bag
{"title":"Hybrid halide perovskite quantum dots for optoelectronics applications: Recent progress and perspective.","authors":"Atif Suhail, Shivang Beniwal, Ramesh Kumar, Anjali Kumar, Monojit Bag","doi":"10.1088/1361-648X/adbb47","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology has transformed optoelectronics through quantum dots (QDs), particularly metal halide perovskite QDs. Perovskite QDs boast high photoluminescent quantum yield, tuneable emission, and excellent defect tolerance without extensive passivation. Quantum confinement effects, which refer to the phenomenon where the motion of charge carriers is restricted to a small region, produce discrete energy levels and blue shifts in these materials. They are ideal for next-generation optoelectronic devices prized for superior optical properties, low cost, and straightforward synthesis. In this review, along with the fundamental physics behind the phenomenon, we have covered advances in synthesis methods such as hot injection, ligand-assisted reprecipitation, ultrasonication, solvothermal, and microwave-assisted that enable precise control over size, shape, and stability, enhancing their suitability for LEDs, lasers, and photodetectors. Challenges include lead toxicity and cost, necessitating research into alternative materials and scalable manufacturing. Furthermore, strategies like doping and surface passivation that improve stability and emission control are discussed comprehensively, and how Lead halide perovskites like CsPbBr3 undergo phase transitions with temperature, impacting device performance, are also investigated. We have explored various characterization techniques, providing insights into nanocrystal properties and behaviors in our study. This review highlights perovskite QDs' synthesis, physical and optoelectronic properties, and potential applications across diverse technologies.
.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adbb47","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology has transformed optoelectronics through quantum dots (QDs), particularly metal halide perovskite QDs. Perovskite QDs boast high photoluminescent quantum yield, tuneable emission, and excellent defect tolerance without extensive passivation. Quantum confinement effects, which refer to the phenomenon where the motion of charge carriers is restricted to a small region, produce discrete energy levels and blue shifts in these materials. They are ideal for next-generation optoelectronic devices prized for superior optical properties, low cost, and straightforward synthesis. In this review, along with the fundamental physics behind the phenomenon, we have covered advances in synthesis methods such as hot injection, ligand-assisted reprecipitation, ultrasonication, solvothermal, and microwave-assisted that enable precise control over size, shape, and stability, enhancing their suitability for LEDs, lasers, and photodetectors. Challenges include lead toxicity and cost, necessitating research into alternative materials and scalable manufacturing. Furthermore, strategies like doping and surface passivation that improve stability and emission control are discussed comprehensively, and how Lead halide perovskites like CsPbBr3 undergo phase transitions with temperature, impacting device performance, are also investigated. We have explored various characterization techniques, providing insights into nanocrystal properties and behaviors in our study. This review highlights perovskite QDs' synthesis, physical and optoelectronic properties, and potential applications across diverse technologies.
.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.