Jie Wang, Dongyuan Han, Huiyu Ji, Ziang Zang, Jianheng Zhou, Ning Wang
{"title":"Multi-cation synergy improves crystallization and antioxidation of CsSnBr<sub>3</sub>for lead-free perovskite light-emitting diodes.","authors":"Jie Wang, Dongyuan Han, Huiyu Ji, Ziang Zang, Jianheng Zhou, Ning Wang","doi":"10.1088/1361-648X/adb823","DOIUrl":null,"url":null,"abstract":"<p><p>Tin (Sn) perovskites have emerged as promising alternatives to address the toxicity concerns associated with lead-based (Pb) perovskite light-emitting diodes (PeLEDs). However, the inherent oxidation of Sn perovskite films leads to a serious efficiency roll-off in PeLEDs at increased current densities. Although three-dimensional CsSnBr<sub>3</sub>perovskites exhibit decent carrier mobilities and thermal stability, their rapid crystallization during solution processing results in inadequate surface coverage. This inadequate coverage increases non-radiative recombination and leakage current, thereby hindering Sn PeLED performance. Herein, we present a multi-cation synergistic strategy by introducing the organic cations formamidinium (FA<sup>+</sup>) and thiophene ethylamine (TEA<sup>+</sup>) into CsSnBr<sub>3</sub>perovskites. The addition of organic cations delays crystallization by forming hydrogen bonds interacting with the CsSnBr<sub>3</sub>. The smaller FA<sup>+</sup>enters the perovskite lattice and improves crystallinity, while the larger TEA<sup>+</sup>cation enhances surface coverage and passivates defect states. By further optimizing the interface between PEDOT:PSS and perovskite layers through the use of ethanolamine and a thin layer of LiF, we achieved a red Sn-based PeLED with an emission wavelength of 670 nm, a maximum luminance of 151 cd m<sup>-2</sup>, and an external quantum efficiency of 0.21%.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb823","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Tin (Sn) perovskites have emerged as promising alternatives to address the toxicity concerns associated with lead-based (Pb) perovskite light-emitting diodes (PeLEDs). However, the inherent oxidation of Sn perovskite films leads to a serious efficiency roll-off in PeLEDs at increased current densities. Although three-dimensional CsSnBr3perovskites exhibit decent carrier mobilities and thermal stability, their rapid crystallization during solution processing results in inadequate surface coverage. This inadequate coverage increases non-radiative recombination and leakage current, thereby hindering Sn PeLED performance. Herein, we present a multi-cation synergistic strategy by introducing the organic cations formamidinium (FA+) and thiophene ethylamine (TEA+) into CsSnBr3perovskites. The addition of organic cations delays crystallization by forming hydrogen bonds interacting with the CsSnBr3. The smaller FA+enters the perovskite lattice and improves crystallinity, while the larger TEA+cation enhances surface coverage and passivates defect states. By further optimizing the interface between PEDOT:PSS and perovskite layers through the use of ethanolamine and a thin layer of LiF, we achieved a red Sn-based PeLED with an emission wavelength of 670 nm, a maximum luminance of 151 cd m-2, and an external quantum efficiency of 0.21%.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.