Alysson Benite de Freitas , Hanstter Hallison Alves Rezende , Guilherme Rocha Lino de Souza , Pablo José Gonçalves
{"title":"Photodynamic inactivation of KPC-producing Klebsiella pneumoniae difficult-to-treat resistance (DTR) by a cationic porphyrin","authors":"Alysson Benite de Freitas , Hanstter Hallison Alves Rezende , Guilherme Rocha Lino de Souza , Pablo José Gonçalves","doi":"10.1016/j.jphotobiol.2025.113133","DOIUrl":"10.1016/j.jphotobiol.2025.113133","url":null,"abstract":"<div><div>The global rise of difficult-to-treat resistance (DTR) bacteria, such as <em>Klebsiella pneumoniae</em> carbapenemase-producing <em>Klebsiella pneumoniae</em> (KPC-Kp), poses a critical challenge in controlling infections and curbing the spread of antimicrobial resistance genes. Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to traditional antimicrobials by effectively targeting extensively drug-resistant pathogens and mitigating antimicrobial resistance. This study investigated the <em>in vitro</em> photodynamic efficacy of the cationic porphyrin 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) against planktonic cultures of KPC-Kp. The minimum effective concentration (MEC) of TMPyP for significant photodynamic activity was determined to be 0.8 μM under an irradiance of 314 ± 11 mW/cm<sup>2</sup>, delivering a total light dose of 189 J/cm<sup>2</sup>. At the same concentration, bacterial suspensions exposed to a lower irradiance of 107 ± 7 mW/cm<sup>2</sup> achieved a > 99.997 % reduction in viability with a lethal light dose of 51.4 J/cm<sup>2</sup>. Scanning electron microscopy (SEM) revealed oxidative damage to the bacterial cell wall induced by aPDI. Hemolysis assays confirmed the safety of TMPyP, with no significant cytotoxicity or photocytotoxicity observed, and a selectivity index (SI) greater than 8, indicating a favorable therapeutic window. These findings underscore the potential of TMPyP-based aPDI as a therapeutic strategy to combat KPC-Kp infections. Further studies are warranted to explore its clinical applications and optimize treatment protocols for DTR bacterial infections.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113133"},"PeriodicalIF":3.9,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pushpamali De Silva , Mohammad A. Saad , Joseph W.R. Swain , Zhiming Mai , Madeline D. Kidd , Joanna J. Choe , Assiris P. Camargo , Sanjay Anand , Vinay Chandrasekhara , Brian W. Pogue , Kenneth K. Wang , Bryan Q. Spring , Edward V. Maytin , Tayyaba Hasan
{"title":"Photodynamic priming with red light triggers adaptive immune responses in a pancreatic cancer mouse model","authors":"Pushpamali De Silva , Mohammad A. Saad , Joseph W.R. Swain , Zhiming Mai , Madeline D. Kidd , Joanna J. Choe , Assiris P. Camargo , Sanjay Anand , Vinay Chandrasekhara , Brian W. Pogue , Kenneth K. Wang , Bryan Q. Spring , Edward V. Maytin , Tayyaba Hasan","doi":"10.1016/j.jphotobiol.2025.113126","DOIUrl":"10.1016/j.jphotobiol.2025.113126","url":null,"abstract":"<div><div>The poor response of pancreatic ductal adenocarcinoma (PDAC) to treatment, including immunotherapy, is attributed to its tumor microenvironment (TME). An ongoing challenge is the desmoplastic and immunosuppressed TME that evades immune surveillance. Here, we investigate transient modulation of the TME to overcome immunosuppression using a light-activated process, termed photodynamic priming (PDP). As a first step, this study captures the temporal dynamics of variations in immune infiltrates and subsequent immune responses in the TME, spleen, and blood of the KPC mouse model of PDAC post-PDP. In response to PDP, there were transient increases in tumor infiltrating lymphocytes (TIL) in tumors. The TIL population post-PDP includes an enrichment of CD8<sup>+</sup> T cells, accompanied by temporal increases in PD-1, CTLA-4, and TIM-3 immune checkpoints on both CD8<sup>+</sup> T and CD4<sup>+</sup> T cells. Significant increases in CD11C<sup>+</sup>MHC-11<sup>+</sup> dendritic cells and proliferating lymphocytes are observed in the spleen within several hours post-tumor PDP, suggesting initiation of adaptive immune responses. These observations are followed by an expansion of CD44<sup>+</sup>CD62<sup>−</sup>CD8<sup>+</sup> effector memory T cells in the blood over several days as evidence of a systemic immune response. Post-PDP TME alterations also included the reduced formation of blood (CD31<sup>+</sup>) and lymphatic (Lyve-1<sup>+</sup>) vessels as well as decreases in PD-L1 and collagen content. Collectively, these data suggest that PDP helps to mitigate immunosuppressive mechanisms and promote enhanced tumor permeability. The temporal dynamics of the processes elucidated here pave the way to develop strategies in future work for combined PDP–immunotherapy utilizing the immune checkpoint expression dynamics for precision therapy.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113126"},"PeriodicalIF":3.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ding Luo , Yanhong Mao , Shengni Zhang , Shengqiang Shen , Xiaohu Ge , Litao Zhang
{"title":"Milk-derived exosome-loaded SS31 as a novel strategy to mitigate UV-induced photodamage in skin","authors":"Ding Luo , Yanhong Mao , Shengni Zhang , Shengqiang Shen , Xiaohu Ge , Litao Zhang","doi":"10.1016/j.jphotobiol.2025.113125","DOIUrl":"10.1016/j.jphotobiol.2025.113125","url":null,"abstract":"<div><div>It is widely recognized that ultraviolet (UV) radiation primarily catalyses photodamage in the skin by generating reactive oxygen species (ROS). In this study, we developed a novel antioxidant complex, Exo-SS31, by loading the antioxidant peptide SS31 (also known as MTP-131, elamipretide) into milk-derived exosomes. Our findings indicate that Exo-SS31 is an effective antioxidant capable of mitigating Human dermal fibroblast (HDF) damage induced by ultraviolet exposure, suppressing ROS production, and achieving greater therapeutic efficacy than SS31 alone. This complex can regulate the levels of superoxide dismutase (SOD) and glutathione (GSH) within the skin, inhibit the expression of proteins in pathways such as pMAPK and AP-1 triggered by UV radiation, and reduce the expression of the matrix metalloproteinases MMP1 and MMP3. Through these mechanisms, Exo-SS31 effectively prevents collagen degradation in the dermis and inhibits ultraviolet-induced photodamage. The use of milk-derived exosomes as carriers for antioxidant peptides represents a promising strategy to increase the bioavailability of peptide-based therapeutics.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113125"},"PeriodicalIF":3.9,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haitao Chen , Changyou Chen , Haoyu Zhao , Yuanyuan Wei , Pingping Wang , Long-Fei Wu , Tao Song
{"title":"Synergistic mechanism of magneto-optical sensing mediated by magnetic response protein Amb0994 and LOV-like protein Amb2291 in Magnetospirillum magneticum AMB-1","authors":"Haitao Chen , Changyou Chen , Haoyu Zhao , Yuanyuan Wei , Pingping Wang , Long-Fei Wu , Tao Song","doi":"10.1016/j.jphotobiol.2025.113124","DOIUrl":"10.1016/j.jphotobiol.2025.113124","url":null,"abstract":"<div><div>Magnetotactic bacteria (MTB), known for their precision in navigating along magnetic fields, also exhibit light-sensitive behaviors. In <em>Magnetospirillum magneticum</em> AMB-1, the photoreceptor Amb2291 is involved in phototaxis regulation and magnetosome synthesis, particularly under oxidative stress. The magnetoreceptor Amb0994 modulates flagellar activity in response to magnetic field changes. Our study used a magneto-optical system to analyze the U-turn motility of north-seeking AMB-1 wild type (WT), <em>amb2291</em> and <em>amb0994</em> mutants under reversed magnetic fields and controlled light conditions. The results showed that WT strains consistently executed U-turns in response to magnetic fields, regardless of light variations. The diameters of U-turn of <em>amb0994</em> mutant were smaller than those of the WT control. When illuminated with blue light in a direction opposite to the magnetic field, Δ<em>amb0994</em> exhibited slower U-turns with diameters similar to WT. In contrast, the Δ<em>amb2291</em> strain exhibited exaggerated U-turn movements under blue light, characterized by larger movement diameters and times compared to the WT, particularly whatever the light propagation direction is the same or opposite to the magnetic field in the initial state of motility. Gene expression analysis revealed that long-term exposure to blue light and magnetic fields led to a significant upregulation of <em>amb2291</em> in Δ<em>amb0994</em> mutant strains and <em>amb0994</em> in Δ<em>amb2291</em> mutant strains. These indicate a potential cooperative role of <em>amb2291</em> and <em>amb0994</em> in modulating bacterial motility under blue light. This research enhances our understanding of photoreception in MTB and its impact on magnetotaxis, shedding light on how environmental factors interact with microorganisms.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113124"},"PeriodicalIF":3.9,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143421944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel approach for fast comparative evaluation of the potency of new photosensitizers using model lipid membranes","authors":"Daria Danilova , Petr Ostroverkhov , Dmitry Medvedev , Mikhail Grin , Sofiya Selektor","doi":"10.1016/j.jphotobiol.2025.113123","DOIUrl":"10.1016/j.jphotobiol.2025.113123","url":null,"abstract":"<div><div>The novel approach for fast comparative evaluation of the potency of new photosensitizers using model lipid membranes is described and substantiated. For this purpose, mixed Langmuir monolayers and Langmuir-Blodgett films containing one of the typical relatively easy photodegradable lipid 1-palmitoyl-2-oleoyl-<em>sn</em>-glycero-3-phosphocholine (POPC) and one of the examined photosensitizers (PSs) are proposed as the models. The changes in the macroscopic properties of such model PS + POPC membranes upon irradiation with visible light (the photo-destruction processes) were recorded using two different methods: commonly used water contact angle measurements and new express method based on the estimation of the changes of the model mixed monolayer mechanical characteristics. The study have been carried out for two series of PSs, cationic and neutral ones. The results of water contact angel measurements have clearly demonstrated that this method can be used for studying the photodestruction of artificial lipid membranes on solid substrates and for comparison of the efficiency of new PSs. However, since model making and measurements are complex and time-consuming, it restricts the preliminary analysis of PSs efficiency. In this work, we suggest rather a simple method for the rapid comparative evaluation of new PSs based on easy and fast measurements, such as recording the surface pressure during irradiation of a PS-containing monolayer directly at an aqueous subphase and determining the mechanical properties of a model monolayer by the oscillating barrier method. The results have demonstrated that the proposed methods are quite valid for studying the photodegradation of artificial lipid membranes and comparing the efficiency of new PSs. In particular, we have shown that these methods can be used not only for multiparametric monitoring of the photodegradation kinetics but also for comparing the efficiency of PSs in lipid structures. The universality of the proposed methods for assessing the effectiveness of PDT at the use of PSs of various structures was demonstrated. The results of this study indicate that cationic PSs exhibit superior activity compared to neutral and anionic ones.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113123"},"PeriodicalIF":3.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vicenin-2 reduces inflammation and apoptosis to relieve skin photoaging via suppressing GSK3β","authors":"Xinru Hu , Meng Chen , Bowen Tan, Hao Yang, Shanyong Li, Rucheng Li, Xinyu Zhang, Feng Long, Yinghao Huang, Xi Duan","doi":"10.1016/j.jphotobiol.2025.113117","DOIUrl":"10.1016/j.jphotobiol.2025.113117","url":null,"abstract":"<div><h3>Background</h3><div>Skin photoaging caused by ultraviolet rays (UVR) not only affects the appearance, but also leads to benign and malignant skin tumors. Vicenin-2, a bioflavonoid, exhibits anti-UVB properties, but its potential in preventing skin photoaging and the underlying mechanisms remain unclear. This study aims to elucidate the molecular mechanisms of Vicenin-2 in treating photoaging through network pharmacology, molecular docking, molecular dynamics simulation, and experimental validation.</div></div><div><h3>Methods</h3><div>We utilized PubChem, Swiss Target Prediction, and Target Net databases to obtain the action targets of Vicenin-2. The Online Mendelian Inheritance in Man (OMIM), GeneCards, and Therapeutic Target Database (TTD) databases were employed to hunt for photoaging-related targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted via the Metascape database. Molecular docking and dynamics simulation methods were used for analyzing the binding sites and binding energies between Vicenin-2 and photoaging targets. Then, a photoaging mouse model and a Human foreskin fibroblast cells (HFF-1) model were created, the therapeutic effect and molecular mechanism of action of Vicenin-2 were validated by Hematoxylin and eosin (H&E), Masson staining and Elastica-Van Gieson (EVG) Staining, enzyme-linked immunosorbent assay (ELISA), Western blot (WB), Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay, Antioxidant enzyme activities and quantitative reverse transcription-polymerase chain reaction (qRT-PCR).</div></div><div><h3>Result</h3><div>The screening of chemical composition and targets indicated that 249 genetic targets of Vicenin-2 were related to photoaging. Bioinformatics analysis suggested that Matrix Metalloproteinases 9(MMP9), Glycogen Synthase Kinase 3(GSK3β), Heat Shock Protein 90 AA1(HSP90AA1) and Nuclear Factor kappa-B1(NF-κB1) might be potential targets for Vicenin-2 in photoaging therapy. Molecular docking and dynamics simulation further showed that Vicenin-2 had the best binding to GSK3β. Through experimental verification, it has been demonstrated that Vicenin-2 alleviate photoaging, acting on GSK3β to regulate the phosphatidylinositol 3- kinase/serine-threonione kinase (PI3K/Akt) pathways, by reducing inflammation and apoptosis.</div></div><div><h3>Conclusions</h3><div>Vicenin-2 has anti-inflammatory and apoptosis-reducing effects through the action of multiple targets to relieve skin photoaging. Among them, GSK3β is the validated therapeutic target of Vicenin-2, which provides new ideas and clues for the development of photoaging therapy.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113117"},"PeriodicalIF":3.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143350540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaomeng Liu , Qing Zhang , Jiaqi Li , Zhewen Deng , Senqiang Zhu , Bo Ma , Rui Liu , Hongjun Zhu
{"title":"Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy","authors":"Xiaomeng Liu , Qing Zhang , Jiaqi Li , Zhewen Deng , Senqiang Zhu , Bo Ma , Rui Liu , Hongjun Zhu","doi":"10.1016/j.jphotobiol.2025.113122","DOIUrl":"10.1016/j.jphotobiol.2025.113122","url":null,"abstract":"<div><div>Malignant tumors continue to be the most common and remain one of the leading causes of death with increasing incidence, mortality, and burden. Traditional chemotherapeutic agents often encounter significant side effects and demonstrate lackluster efficacy. Photodynamic therapy (PDT) is widely recognized as a microtrauma therapeutic method for tumor treatment technique. Ir(III) complexes are a potential photosensitizer (PS) type due to their excellent photophysical properties. <strong>Ir-1</strong> and <strong>Ir-2,</strong> which are two novel Ir(III) complexes were synthesized and characterized using spectroscopic and electrochemical techniques, the key structural difference lies in the position of a benzene in the C^N ligand. This slight change makes <strong>Ir-2</strong> have a better intersystem crossing (ISC) ability and thus has more excellent triplet excited state properties. So <strong>Ir-2</strong> shows high singlet oxygen (<sup>1</sup>O<sub>2</sub>) production and photocytotoxicity with half maximal inhibitory concentration (IC<sub>50</sub>) of 40 nM, effectively inhibiting and eliminating tumors in mice while demonstrating good biosafety. This study highlights the importance of precise molecular design in developing highly efficient PSs for PDT.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113122"},"PeriodicalIF":3.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biosynthesis, characterization, and multifaceted applications of Elytraria acaulis synthesized silver and gold nanoparticles: Anticancer, antibacterial, larvicidal, and photocatalytic activities.","authors":"Manickam Sathiyaraj , Devan Elumalai , Venugopal Rajendran , Maduraiveeran Hemavathi , Kamalanathan Ashok , Muthu Babu , Ulaganathan Monisha , Subramaniyan Poonguzhali , Sankar Punithavalli , Gnanasekaran Abirami","doi":"10.1016/j.jphotobiol.2025.113102","DOIUrl":"10.1016/j.jphotobiol.2025.113102","url":null,"abstract":"<div><div>Green synthesis of metal nanoparticles using plant extracts has emerged as an eco-friendly alternative to conventional methods, offering potential applications in biomedicine and environmental remediation. This study demonstrates the successful biosynthesis of silver nanoparticles (SNPs) and gold nanoparticles (GNPs) using <em>Euphorbia acaulis</em> leaf extract as a reducing and capping agent. The nanoparticles were thoroughly characterized using UV–Vis spectroscopy, HR-SEM, EDX, TEM, AFM, XRD, and FTIR analyses, confirming their successful synthesis and revealing their predominantly spherical morphology with sizes ranging from 1 to 100 nm. SNPs and GNPs exhibited significant anticancer activity against MCF-7 breast cancer cells, with IC<sub>50</sub> values of 59.87 μg/mL and 91.074 μg/mL, respectively. The nanoparticles induce apoptosis and DNA damage in cancer cells, as evidenced by propidium iodide staining, DAPI staining, and comet assay. In antibacterial studies, SNPs demonstrated superior activity against both <em>E. coli</em> (17.00 mm zone of inhibition) and <em>S. aureus</em> (10.77 mm zone of inhibition) compared to GNPs. The nanoparticles also showed promising larvicidal activity against <em>Aedes aegypti</em>, with SNPs exhibiting higher potency (LC<sub>50</sub>: 20.81 mg/L) than GNPs (LC<sub>50</sub>: 51.10 mg/L). Histopathological analysis revealed significant tissue damage in SNP-treated larvae, particularly in the midgut, hindgut, muscles, and nerve ganglia. Additionally, both nanoparticles demonstrated photocatalytic activity in degrading methylene blue dye, with SNPs showing superior performance. These findings suggest that biofunctionalized SNPs and GNPs synthesized using <em>E. acaulis</em> possess multiple biological applications, making them promising candidates for various biomedical and environmental applications.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"263 ","pages":"Article 113102"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gustavo Vital dos Santos , Hesrom Fernandes Serra Moura , Pedro Jorge Louro Crugeira , Anna Paula Lima Teixeira da Silva , Isabele Cardoso Vieira de Castro , Wellington Luís Reis Costa , Paulo Fernando de Almeida , Antonio Luiz Barbosa Pinheiro
{"title":"Photoinactivation of sulfate-reducing bacteria using 1,9-dimethyl-methylene blue – DMMB and laser light","authors":"Gustavo Vital dos Santos , Hesrom Fernandes Serra Moura , Pedro Jorge Louro Crugeira , Anna Paula Lima Teixeira da Silva , Isabele Cardoso Vieira de Castro , Wellington Luís Reis Costa , Paulo Fernando de Almeida , Antonio Luiz Barbosa Pinheiro","doi":"10.1016/j.jphotobiol.2025.113103","DOIUrl":"10.1016/j.jphotobiol.2025.113103","url":null,"abstract":"<div><div>Annually, the oil and gas industry faces equipment losses and product quality degradation due to the presence of sulfate-reducing bacteria (SRB). Given the negative impact of SRB, this study evaluates the use of photoinactivation (PI) with zinc chloride double salt of 1,9-Dimethyl-Methylene Blue (DMMB) as a photosensitizer (PS) in varying concentrations and combined with Laser light at different exposures in an SRB consortium. For culture growth, a modified Postgate C medium (without ferrous sulfate) was used, and cell quantification was performed on 100 μL aliquots of the consortium, read on a spectrophotometer (λ600 nm) in an oxygen- and light-free environment at room temperature. Statistical analyses included two-way ANOVA and ANOVA with interaction to separately and jointly evaluate the effects of PS and light in PI. Results indicated microbial activity in all groups, with an antimicrobial inhibition rate exceeding 50 % (<em>p</em> < 0.05) for concentrations above 1.5 μg/mL of DMMB. PI efficacy significantly depended on DMMB concentration and light density, achieving a 70.58 % (55.73–70.58, with a mean of 66.71 %) reduction (p < 0.05) with 1.5 μg/mL of DMMB and a 70.15 % (65–70.15, with a mean of 68.21 %) reduction with 2.0 μg/mL at an intensity of 21.6 J/cm<sup>2</sup>. In conclusion, PI presents a promising alternative to biocides in the oil and gas industry, offering easy application, avoiding bacterial resistance, being environmentally safe, and compatible with other SRB population control techniques.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"263 ","pages":"Article 113103"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wavelength-dependency of the impact of light on proliferation and DNA damage of corneal cells in vitro","authors":"Anaïs Françon , Francine Behar-Cohen , Alicia Torriglia","doi":"10.1016/j.jphotobiol.2025.113118","DOIUrl":"10.1016/j.jphotobiol.2025.113118","url":null,"abstract":"<div><div>The wavelength-dependent impact of light has been mainly studied focusing on retina. In particular, an opposite effect of the two ends of the visible spectrum was observed, with blue wavelengths being harmful and red wavelengths being protective. However, few studies on the cornea indicate that the increasing exposition to artificial light due to digital devices is linked to an increase in computer vision syndrome affecting the cornea. In this study, we aim at deciphering the impact of blue and red LED light on a primary culture of corneal endothelial cells, by looking at cell death and proliferation, and at DNA replication and DNA breaks. Our results show that exposure to blue light at 5.35 J/cm<sup>2</sup> (455 nm) induces the inhibition of DNA replication and cell proliferation, and the formation of DNA breaks, highlighted by the formation of γH2AX foci and DNA fragmentation. Addition of red light at 0.3 J/cm<sup>2</sup> (630 nm) to blue light mitigates the formation of DNA damage and delays the kinetics of formation and repair of the damage. Interestingly, exposure of the corneal cells to red light alone induces the formation of γH2AX foci that do not correspond to DNA breaks, but to DNA replication forks in proliferative cells. Our results highlight the wavelength-dependent effect of light on the cornea, and point out that the formation of γH2AX foci is not always representative of DNA breaks. This emphasizes the importance of light spectrum in eye health, an important issue in today's changing light environment.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113118"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143241305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}