Shehab Elbeltagi , Mohammed Al-zharani , Zienab E. Eldin
{"title":"红细胞膜包被索拉非尼- mxene - au纳米复合材料用于肝癌的协同化学光热治疗","authors":"Shehab Elbeltagi , Mohammed Al-zharani , Zienab E. Eldin","doi":"10.1016/j.jphotobiol.2025.113185","DOIUrl":null,"url":null,"abstract":"<div><div>Red blood cell (RBC) membrane has emerged as innovative biological nanocarriers. In this study, RBCs membrane-coated sorafenib (SF)-MXene-Au nanocomposite (SF-MX-Au@RBCs), was developed as a smart drug delivery (SDD) system, offering enhanced photothermal therapy (PTT) under near-infrared (NIR) irradiation. The synthesized SF-MX-Au@RBCs exhibited an average size of approximately 65 nm and a zeta potential of −22.11 mV. The cumulative SF release from SF-MX-Au@RBCs reached 61.4 % under NIR irradiation at pH 7.4 over 96 h. Furthermore, the treatment effectiveness of SF-MX-Au@RBCs as a chemo-PTT treatment was evaluated against HepG2 liver cancer cells. In vitro assay demonstrated significant cytotoxicity, with chemo-PTT achieving an IC<sub>50</sub> value of 7.3 μg/mL and leading to necrosis rates of 31.9 % while the total apoptosis rates was 56.3 % (29.5 % late and 26.8 % early apoptosis) in treated cells. Western blot analysis indicated significant suppression of phosphorylated ERK (p-ERK) and MEK (p-MEK) in the MEK/ERK signaling pathway, with greater inhibition observed in the SF-MX-Au@RBCs group compared to SF alone. Additionally, key angiogenesis-related proteins, involving VEGFR2, VEGFR3, and PDGFR, were downregulated, highlighting the superior antiangiogenic effects of the nanocomposite. In vivo studies utilizing a xenograft model in BALB/c mice under NIR revealed that the chemo-PTT treatment indicated the smallest tumor volume (140 mm<sup>3</sup>) and tumor weight (0.16 g) compared to the other treatment groups. The chemo-PTT approach significantly enhanced antitumor efficacy, highlighting the potential for further optimization and improved treatment outcomes through targeted drug delivery systems (DDS). In addition, a comprehensive molecular docking analysis was conducted to examine the binding interactions of SF and MXene with three crucial proteins, namely: RAF proto-oncogene serine/threonine-protein kinase, FGR tyrosine-protein kinase, and mitogen-activated protein kinase (MAPK). MXene demonstrated superior binding affinities across the investigated target proteins, with ΔG values ranging from −11.94 to −12.56 kcal/mol.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"268 ","pages":"Article 113185"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RBC membrane-coated sorafenib-MXene-Au nanocomposites for synergistic chemo-photothermal therapy of liver cancer\",\"authors\":\"Shehab Elbeltagi , Mohammed Al-zharani , Zienab E. Eldin\",\"doi\":\"10.1016/j.jphotobiol.2025.113185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Red blood cell (RBC) membrane has emerged as innovative biological nanocarriers. In this study, RBCs membrane-coated sorafenib (SF)-MXene-Au nanocomposite (SF-MX-Au@RBCs), was developed as a smart drug delivery (SDD) system, offering enhanced photothermal therapy (PTT) under near-infrared (NIR) irradiation. The synthesized SF-MX-Au@RBCs exhibited an average size of approximately 65 nm and a zeta potential of −22.11 mV. The cumulative SF release from SF-MX-Au@RBCs reached 61.4 % under NIR irradiation at pH 7.4 over 96 h. Furthermore, the treatment effectiveness of SF-MX-Au@RBCs as a chemo-PTT treatment was evaluated against HepG2 liver cancer cells. In vitro assay demonstrated significant cytotoxicity, with chemo-PTT achieving an IC<sub>50</sub> value of 7.3 μg/mL and leading to necrosis rates of 31.9 % while the total apoptosis rates was 56.3 % (29.5 % late and 26.8 % early apoptosis) in treated cells. Western blot analysis indicated significant suppression of phosphorylated ERK (p-ERK) and MEK (p-MEK) in the MEK/ERK signaling pathway, with greater inhibition observed in the SF-MX-Au@RBCs group compared to SF alone. Additionally, key angiogenesis-related proteins, involving VEGFR2, VEGFR3, and PDGFR, were downregulated, highlighting the superior antiangiogenic effects of the nanocomposite. In vivo studies utilizing a xenograft model in BALB/c mice under NIR revealed that the chemo-PTT treatment indicated the smallest tumor volume (140 mm<sup>3</sup>) and tumor weight (0.16 g) compared to the other treatment groups. The chemo-PTT approach significantly enhanced antitumor efficacy, highlighting the potential for further optimization and improved treatment outcomes through targeted drug delivery systems (DDS). In addition, a comprehensive molecular docking analysis was conducted to examine the binding interactions of SF and MXene with three crucial proteins, namely: RAF proto-oncogene serine/threonine-protein kinase, FGR tyrosine-protein kinase, and mitogen-activated protein kinase (MAPK). MXene demonstrated superior binding affinities across the investigated target proteins, with ΔG values ranging from −11.94 to −12.56 kcal/mol.</div></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"268 \",\"pages\":\"Article 113185\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1011134425000880\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000880","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RBC membrane-coated sorafenib-MXene-Au nanocomposites for synergistic chemo-photothermal therapy of liver cancer
Red blood cell (RBC) membrane has emerged as innovative biological nanocarriers. In this study, RBCs membrane-coated sorafenib (SF)-MXene-Au nanocomposite (SF-MX-Au@RBCs), was developed as a smart drug delivery (SDD) system, offering enhanced photothermal therapy (PTT) under near-infrared (NIR) irradiation. The synthesized SF-MX-Au@RBCs exhibited an average size of approximately 65 nm and a zeta potential of −22.11 mV. The cumulative SF release from SF-MX-Au@RBCs reached 61.4 % under NIR irradiation at pH 7.4 over 96 h. Furthermore, the treatment effectiveness of SF-MX-Au@RBCs as a chemo-PTT treatment was evaluated against HepG2 liver cancer cells. In vitro assay demonstrated significant cytotoxicity, with chemo-PTT achieving an IC50 value of 7.3 μg/mL and leading to necrosis rates of 31.9 % while the total apoptosis rates was 56.3 % (29.5 % late and 26.8 % early apoptosis) in treated cells. Western blot analysis indicated significant suppression of phosphorylated ERK (p-ERK) and MEK (p-MEK) in the MEK/ERK signaling pathway, with greater inhibition observed in the SF-MX-Au@RBCs group compared to SF alone. Additionally, key angiogenesis-related proteins, involving VEGFR2, VEGFR3, and PDGFR, were downregulated, highlighting the superior antiangiogenic effects of the nanocomposite. In vivo studies utilizing a xenograft model in BALB/c mice under NIR revealed that the chemo-PTT treatment indicated the smallest tumor volume (140 mm3) and tumor weight (0.16 g) compared to the other treatment groups. The chemo-PTT approach significantly enhanced antitumor efficacy, highlighting the potential for further optimization and improved treatment outcomes through targeted drug delivery systems (DDS). In addition, a comprehensive molecular docking analysis was conducted to examine the binding interactions of SF and MXene with three crucial proteins, namely: RAF proto-oncogene serine/threonine-protein kinase, FGR tyrosine-protein kinase, and mitogen-activated protein kinase (MAPK). MXene demonstrated superior binding affinities across the investigated target proteins, with ΔG values ranging from −11.94 to −12.56 kcal/mol.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.