{"title":"Effect of further substitutions at 5-, 6-, 7-, or 8-position of 3-[3-(4-methoxyphenyl)-1-hydroxyprop-2-yl]coumarin on phytotoxicity.","authors":"Satoshi Yamauchi, Hazna Sartiva, Hisashi Nishiwaki","doi":"10.1584/jpestics.D23-016","DOIUrl":"https://doi.org/10.1584/jpestics.D23-016","url":null,"abstract":"<p><p>Derivatives of the coumarin ring in (<i>R</i>)-3-[3-(4-methoxyphenyl)-1-hydroxyprop-2-yl]coumarin <b>2</b>, which is a lignan structure, were synthesized to clarify their structure-phytotoxicity relationships. The growth-inhibitory activity of the 8-OCH<sub>3</sub> derivative <b>8</b> (IC<sub>50</sub>=228 µM) was more potent against the roots of lettuce seedlings than the compound without substituents <b>2</b>. As for the roots of Italian ryegrass seedlings, the presence of the methoxy group at the 7- or 8-position was extremely effective for inhibiting growth (7-OCH<sub>3</sub> <b>7</b>: IC<sub>50</sub>=121 µM, 8-OCH<sub>3</sub> <b>8</b>: 56.7 µM). Methyl derivatives at the 5- or 8-position showed activity levels similar to those of the compound without substituents <b>2</b> (5-CH<sub>3</sub> <b>13</b>: IC<sub>50</sub>=214 µM, 8-CH<sub>3</sub> <b>16</b>: IC<sub>50</sub>=225 µM). The activities of OH- and F-derivatives were not observed or were lower.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 3","pages":"93-98"},"PeriodicalIF":2.4,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f2/8e/jps-48-3-D23-016.PMC10513945.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41176497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fenoxycarb, a carbamate insect growth regulator, inhibits brassinosteroid action.","authors":"Shinsaku Ito, Kojiro Kawada, Yasumasa Saeki, Takeshi Nakano, Yasuyuki Sasaki, Shunsuke Yajima","doi":"10.1584/jpestics.D23-015","DOIUrl":"https://doi.org/10.1584/jpestics.D23-015","url":null,"abstract":"<p><p>Brassinosteroids (BRs) are steroid hormones that regulate plant growth, development, and stress resistance. In this study, we evaluated the effect of agrochemicals on dark-induced hypocotyl elongation, which is regulated by BRs, to identify novel chemicals that regulate BR action. We found that the juvenile hormone agonist fenoxycarb inhibited dark-induced hypocotyl elongation in <i>Arabidopsis</i>. Treatment with the same class of juvenile hormone agonist, pyriproxyfen, did not affect hypocotyl elongation. Co-treatment with fenoxycarb and BR partly canceled the fenoxycarb-induced hypocotyl suppression. In addition, gene expression analysis revealed that fenoxycarb altered the BR-responsive gene expression. These results indicate that fenoxycarb is a BR action inhibitor.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 3","pages":"107-110"},"PeriodicalIF":2.4,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/34/e4/jps-48-3-D23-015.PMC10513946.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41176512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Syntheses of (+)-costic acid and structurally related eudesmane sesquiterpenoids and their biological evaluations as acaricidal agents against <i>Varroa destructor</i>.","authors":"Kenji Nemoto, Hirosato Takikawa, Yusuke Ogura","doi":"10.1584/jpestics.D23-029","DOIUrl":"https://doi.org/10.1584/jpestics.D23-029","url":null,"abstract":"<p><p>Synthesis of (+)-costic acid, isolated from <i>Dittrichia viscosa</i> (L.) W. Greuter as a natural acaricidal sesquiterpenoid, was achieved in 16 steps from (<i>R</i>)-carvone with an overall yield of 4.8%, involving the radical cyclization of selenoester to construct a decalone framework as the key step. Other structurally related natural products, (+)-costal, (+)-costol, and (+)-β-selinene, were also synthesized. The acaricidal activities of these four natural products and some synthetic intermediates were also evaluated against <i>Varroa destructor</i>. Among them, (+)-costal especially exhibited potent acaricidal activity.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 3","pages":"111-115"},"PeriodicalIF":2.4,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a9/a4/jps-48-3-D23-029.PMC10513954.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production of copper nanoparticle-immobilized chitin nanofibers and their role in plant disease control.","authors":"Mayumi Egusa, Shunki Watanabe, Hujun Li, Dagmawi Abebe Zewude, Shinsuke Ifuku, Hironori Kaminaka","doi":"10.1584/jpestics.D23-001","DOIUrl":"https://doi.org/10.1584/jpestics.D23-001","url":null,"abstract":"<p><p>Chitin is used in agriculture to improve crop production; however, its use is limited due to difficulties in its handling. A chitin nanofiber (CNF) overcomes this issue and, due to its elicitor activity, has great potential for crop protection. To expand CNF utilization, a copper nanoparticles-based antimicrobic CNF (CuNPs/CNF) was prepared using a chemical reduction method. The formation of CuNPs was confirmed <i>via</i> scanning electron microscopy. Thermogravimetric analysis revealed that the amount of CuNPs on the CNF was dose-dependent on the precursor salt, copper acetate. CuNPs endowed the CNF with strong antimicrobial activity against <i>Alternaria brassicicola</i> and <i>Pectobacterium carotovorum</i>. Moreover, the CuNPs/CNF reduced pathogen infection in cabbage. The antimicrobial activity and disease prevention of the CuNPs/CNF was increased compared to the corresponding CNF or commercial agrochemical Bordeaux treatment. These results indicate that CuNPs conferred antimicrobial activity on the CNF and increased the efficacy of plant disease protection.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 3","pages":"86-92"},"PeriodicalIF":2.4,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/19/jps-48-3-D23-001.PMC10513960.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41120362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production of desmethyl-gregatin A, a possible causative toxin of brown stem rot in adzuki bean, by <i>Phialophora gregata</i> f. sp. <i>adzukicola</i>.","authors":"Moe Aizawa, Hayate Saito, Takuya Mitazaki, Takara Taketani, Keiichi Noguchi, Sho Miyazaki, Hiroshi Kawaide, Masahiro Natsume","doi":"10.1584/jpestics.D22-070","DOIUrl":"https://doi.org/10.1584/jpestics.D22-070","url":null,"abstract":"<p><p>To elucidate the cause of brown stem rot in the adzuki bean, we re-evaluated the phytotoxins produced in cultures of the causative agent, <i>Phialophora gregata</i> f. sp. <i>adzukicola</i>. The ethyl acetate-soluble acidic fraction of the culture, as well as the neutral fraction, inhibited the growth of alfalfa seedlings. In the neutral fraction, known phytotoxins gregatin A, B, and C or D and penicilliol A were present. Although the phytotoxins in the acidic fraction were unstable, liquid chromatography-mass spectrometry analysis of the partially purified material suggested that one phytotoxin present was the non-methylated gregatin desmethyl-gregatin A (gregatinic acid A).</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 2","pages":"47-53"},"PeriodicalIF":2.4,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/59/jps-48-2-D22-070.PMC10288003.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10074752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metagenomic analysis of ready biodegradability tests to ascertain the relationship between microbiota and the biodegradability of test chemicals.","authors":"Yoshinari Takano, Saki Takekoshi, Kotaro Takano, Yoshihide Matoba, Makiko Mukumoto, Osamu Shirai","doi":"10.1584/jpestics.D22-067","DOIUrl":"10.1584/jpestics.D22-067","url":null,"abstract":"<p><p>Ready biodegradability tests conducted in accordance with the Organisation for Economic Co-operation and Development guidelines (test 301C or test 301F) are performed using activated sludge (AS) prepared by the Chemicals Evaluation and Research Institute (AS-CERI) or that taken from a sewage treatment plant (AS-STP). It had been reported that AS-CERI had lower activity than AS-STP in biodegrading test chemicals, and that biodegradation was accelerated by increasing the volume of the test medium. However, these phenomena have not been clarified from the perspective of the microbiota. In this study, using metagenomic analysis, we first showed that the microbiota of AS-CERI was biased in its distribution of phyla, less diverse, and had greater lot-to-lot variability than that of AS-STP. Second, after cultivation for a long period of time, the microbiota of AS-STP and AS-CERI became more similar to each other in terms of community structure. Third, determining degraders of test substances when each substance was actively biodegraded was found to be an effective approach. Finally, we clarified experimentally that a large volume of test medium increased the number of species that could degrade test substances in the condition where the initial concentrations of each substance and AS-STP were kept constant.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 2","pages":"35-46"},"PeriodicalIF":1.5,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4f/ae/jps-48-2-D22-067.PMC10288005.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10092967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashraf Arif Nasir, Nurul Yaqin Syarif, Dzolkhifli Omar, Norhayu Asib
{"title":"Effectiveness of <i>Cordyceps fumosorosea</i> Wettable Powder Formulation against <i>Metisa plana</i> (Walker) and Its Side Effects on <i>Elaeidobius kamerunicus</i> in Oil palm Plantation.","authors":"Ashraf Arif Nasir, Nurul Yaqin Syarif, Dzolkhifli Omar, Norhayu Asib","doi":"10.1584/jpestics.D22-072","DOIUrl":"https://doi.org/10.1584/jpestics.D22-072","url":null,"abstract":"<p><p>Development of mycoinsecticides with <i>Cordyceps fumosorosea</i> as an active ingredient is established as an alternate way to control the <i>Metisa plana</i> population while reducing chemical insecticide dependence. Three mycoinsecticide formulations (SS6, SS7, and SS8) with dispersing and wetting agents were developed as wettable powder formulations in this trial. SS8 demonstrated the best wettability, suspensibility, and dispersibility with viability at 10<sup>7</sup> (CFU)/mL even after three months of storage. However, SS7 developed with <i>C. fumosorosea</i> as an active ingredient was found to effectively reduce the bagworm population by more than 95%. The application of all mycoinsecticide formulations in the infested oil palm area was able to reduce the <i>M. plana</i> population by more than 95%, 30 DAT. The formulations also show no significant increase in mortality of the oil palm pollinator, <i>Elaeidobius kamerunicus</i>. This finding indicates that the <i>C. fumosorosea</i> tested has potential for managing bagworms without harming pollinators on oil palm plantations.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 2","pages":"54-60"},"PeriodicalIF":2.4,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/9d/jps-48-2-D22-072.PMC10288000.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cycloprop-2-ene-1-carboxylates: Potential chemical biology tools in the early growth stage of <i>Arabidopsis thaliana</i>.","authors":"Tomoyuki Koyama, Ikuo Takahashi, Tadao Asami","doi":"10.1584/jpestics.D22-034","DOIUrl":"https://doi.org/10.1584/jpestics.D22-034","url":null,"abstract":"<p><p>Cyclopropene derivatives have been used as extremely reactive units in organic chemistry owing to their high ring-strain energy. They have become popular reagents both for bioorthogonal chemistry and for chemical biology because of their small size and ability to be genetically encoded. In this context, we conducted an exploratory study to identify the biologically active cyclopropenes that affect normal plant growth. We synthesized several cycloprop-2-ene-1-carboxylic acid derivatives and evaluated their effects on the early growth stage of <i>Arabidopsis thaliana</i>. Eventually, we identified the chemicals that affect apical hook development in <i>Arabidopsis thaliana</i>. Their mode of action is different from those of ethylene receptor inhibition and gibberellin biosynthesis inhibition. We expect that some of the chemicals reported here can be new tools in chemical biology to determine useful molecular targets for herbicides or plant growth regulators.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 2","pages":"61-64"},"PeriodicalIF":2.4,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/34/6a/jps-48-2-D22-034.PMC10288001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fungicidal spectrum and biological properties of a new fungicide, pyriofenone.","authors":"Munekazu Ogawa, Akihiro Nishimura, Yuzuka Abe, Yohei Fukumori, Kazumi Suzuki, Shigeru Mitani","doi":"10.1584/jpestics.D22-068","DOIUrl":"https://doi.org/10.1584/jpestics.D22-068","url":null,"abstract":"<p><p>Pyriofenone is a new fungicide developed by Ishihara Sangyo Kaisha, Ltd. To determine the fungicidal spectrum of pyriofenone, <i>in vivo</i> pot tests and <i>in vitro</i> mycelial growth-inhibition tests were conducted. Pyriofenone showed excellent activity against wheat and cucumber powdery mildew and moderate efficacy against rice blast in the pot tests. In the mycelial growth-inhibition tests, most fungi were not affected by pyriofenone except for <i>Botrytis cinerea</i>, <i>Helminthosporium sacchari</i>, <i>Pseudocercosporella herpotrichoides</i>, <i>Pyricularia oryzae</i>, <i>Rosellinia necatrix</i>, and <i>Verticillium dahliae</i>. The fungicidal properties of pyriofenone on powdery mildew in cucumber and wheat were evaluated precisely. Pyriofenone exhibited excellent preventive and residual activities. It had high rainfastness in the cucumber leaves against powdery mildew. Pyriofenone also showed inhibitory activity on lesion development upon application until 2 days after inoculation, and the lesion expansion and sporulation of the cucumber powdery mildew fungus were effectively controlled. Furthermore, pyriofenone showed translaminar and vapor activities.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 2","pages":"65-70"},"PeriodicalIF":2.4,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/0e/jps-48-2-D22-068.PMC10288004.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10045367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualization of azoxystrobin penetration in wheat leaves using mass microscopy imaging.","authors":"Soichiro Ikuta, Eiichiro Fukusaki, Shuichi Shimma","doi":"10.1584/jpestics.D22-063","DOIUrl":"https://doi.org/10.1584/jpestics.D22-063","url":null,"abstract":"<p><p>Fungicides must penetrate the internal tissues of plants to kill pathogenic fungi. Mass spectrometers have been used to confirm this penetration, but conventional mass spectrometric methods cannot distinguish the fungicides in different internal tissues owing to the extraction steps. However, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can detect the penetration of fungicides into leaf sections through direct analysis of the sample surfaces. Therefore, the objective of this study was to establish a method for visualizing fungicide penetration in wheat leaf cross sections using MALDI-MSI. The penetration of azoxystrobin from the epidermal to the internal tissue of the leaves was observed. Moreover, azoxystrobin accumulates in the cells around the vascular bundle. This study suggests that MSI can be useful for the evaluation of fungicide penetration in plant leaves.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"48 2","pages":"29-34"},"PeriodicalIF":2.4,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d1/17/jps-48-2-D22-063.PMC10288002.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9707130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}