{"title":"Simultaneous Use of MutS and RecA for Suppression of Nonspecific Amplification during PCR.","authors":"Kenji Fukui, Seiki Kuramitsu","doi":"10.1155/2013/823730","DOIUrl":"https://doi.org/10.1155/2013/823730","url":null,"abstract":"<p><p>Thermus thermophilus MutS, a thermostable mismatch-recognizing protein, is utilized in PCR to suppress nonspecific amplification by preventing synthesis from mismatched primers. T. thermophilus RecA also decreases nonspecific amplification by promoting proper hybridization between the primer and template. We observed that MutS and RecA function under the same reaction conditions and that MutS and RecA do not preclude each other. Furthermore, there were some DNA sequences for which only one of the 2 proteins effectively suppressed nonspecific amplification. The simultaneous use of MutS and RecA is a more attractive error-suppressing technique than the use of either of the 2 proteins alone. </p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/823730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31678799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptionally Repressive Chromatin Remodelling and CpG Methylation in the Presence of Expanded CTG-Repeats at the DM1 Locus.","authors":"Judith Rixt Brouwer, Aline Huguet, Annie Nicole, Arnold Munnich, Geneviève Gourdon","doi":"10.1155/2013/567435","DOIUrl":"https://doi.org/10.1155/2013/567435","url":null,"abstract":"<p><p>An expanded CTG-repeat in the 3' UTR of the DMPK gene is responsible for myotonic dystrophy type I (DM1). Somatic and intergenerational instability cause the disease to become more severe during life and in subsequent generations. Evidence is accumulating that trinucleotide repeat instability and disease progression involve aberrant chromatin dynamics. We explored the chromatin environment in relation to expanded CTG-repeat tracts in hearts from transgenic mice carrying the DM1 locus with different repeat lengths. Using bisulfite sequencing we detected abundant CpG methylation in the regions flanking the expanded CTG-repeat. CpG methylation was postulated to affect CTCF binding but we found that CTCF binding is not affected by CTG-repeat length in our transgenic mice. We detected significantly decreased DMPK sense and SIX5 transcript expression levels in mice with expanded CTG-repeats. Expression of the DM1 antisense transcript was barely affected by CTG-repeat expansion. In line with altered gene expression, ChIP studies revealed a locally less active chromatin conformation around the expanded CTG-repeat, namely, decreased enrichment of active histone mark H3K9/14Ac and increased H3K9Me3 enrichment (repressive chromatin mark). We also observed binding of PCNA around the repeats, a candidate that could launch chromatin remodelling cascades at expanded repeats, ultimately affecting gene transcription and repeat instability. </p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/567435","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32054319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical approaches for structure and function of RNA in postgenomic era.","authors":"Tae Suk Ro-Choi, Yong Chun Choi","doi":"10.1155/2012/369058","DOIUrl":"https://doi.org/10.1155/2012/369058","url":null,"abstract":"<p><p>In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5'-cap structures (types 0-III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work \"Function and Structure of Spliceosome\" in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/369058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30471046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes.","authors":"Takehiro Nishikawa, Takeshi Sunami, Tomoaki Matsuura, Tetsuya Yomo","doi":"10.1155/2012/923214","DOIUrl":"https://doi.org/10.1155/2012/923214","url":null,"abstract":"<p><p>Directed evolution of proteins is a technique used to modify protein functions through \"Darwinian selection.\" In vitro compartmentalization (IVC) is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype) and the protein translated from the information (phenotype), which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE) system and a fluorescence-activated cell sorter (FACS) used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/923214","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30887857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential of peptides as inhibitors and mimotopes: selection of carbohydrate-mimetic peptides from phage display libraries.","authors":"Teruhiko Matsubara","doi":"10.1155/2012/740982","DOIUrl":"https://doi.org/10.1155/2012/740982","url":null,"abstract":"<p><p>Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase. However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These peptides are known as \"carbohydrate-mimetic peptides (CMPs)\" because they mimic carbohydrate structures. Compared to carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes that are conjugated with adjuvant for vaccination.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/740982","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31000344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges and opportunities for small molecule aptamer development.","authors":"Maureen McKeague, Maria C Derosa","doi":"10.1155/2012/748913","DOIUrl":"https://doi.org/10.1155/2012/748913","url":null,"abstract":"<p><p>Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/748913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31047774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation.","authors":"Fanglei Zhuang, Ryan T Fuchs, G Brett Robb","doi":"10.1155/2012/360358","DOIUrl":"https://doi.org/10.1155/2012/360358","url":null,"abstract":"<p><p>Eukaryotic regulatory small RNAs (sRNAs) play significant roles in many fundamental cellular processes. As such, they have emerged as useful biomarkers for diseases and cell differentiation states. sRNA-based biomarkers outperform traditional messenger RNA-based biomarkers by testing fewer targets with greater accuracy and providing earlier detection for disease states. Therefore, expression profiling of sRNAs is fundamentally important to further advance the understanding of biological processes, as well as diagnosis and treatment of diseases. High-throughput sequencing (HTS) is a powerful approach for both sRNA discovery and expression profiling. Here, we discuss the general considerations for sRNA-based HTS profiling methods from RNA preparation to sequencing library construction, with a focus on the causes of systematic error. By examining the enzymatic manipulation steps of sRNA expression profiling, this paper aims to demystify current HTS-based sRNA profiling approaches and to aid researchers in the informed design and interpretation of profiling experiments.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/360358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30750045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PCR amplification and transcription for site-specific labeling of large RNA molecules by a two-unnatural-base-pair system.","authors":"Michiko Kimoto, Rie Yamashige, Shigeyuki Yokoyama, Ichiro Hirao","doi":"10.1155/2012/230943","DOIUrl":"https://doi.org/10.1155/2012/230943","url":null,"abstract":"<p><p>For the site-specific labeling and modification of RNA by genetic alphabet expansion, we developed a PCR and transcription system using two hydrophobic unnatural base pairs: 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) as a third pair for PCR amplification and Ds and pyrrole-2-carbaldehyde (Pa) for the incorporation of functional components as modified Pa bases into RNA by T7 transcription. To prepare Ds-containing DNA templates with long chains, the Ds-Px pair was utilized in a fusion PCR method, by which we demonstrated the synthesis of 282-bp DNA templates containing Ds at specific positions. Using these Ds-containing DNA templates and a biotin-linked Pa substrate (Biotin-PaTP) as a modified Pa base, 260-mer RNA transcripts containing Biotin-Pa at a specific position were generated by T7 RNA polymerase. This two-unnatural-base-pair system, combining the Ds-Px and Ds-Pa pairs with modified Pa substrates, provides a powerful tool for the site-specific labeling and modification of desired positions in large RNA molecules.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/230943","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30760822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metal Ion Chelates as Surrogates of Nucleobases for the Recognition of Nucleic Acid Sequences: The Pd(2+) Complex of 2,6-Bis(3,5-dimethylpyrazol-1-yl)purine Riboside.","authors":"Sharmin Taherpour, Tuomas Lönnberg","doi":"10.1155/2012/196845","DOIUrl":"https://doi.org/10.1155/2012/196845","url":null,"abstract":"<p><p>A 2,6-bis(3,5-dimethylpyrazol-1-yl)purine ribonucleoside has been prepared and incorporated as a conventionally protected phosphoramidite into a 9-mer 2'-O-methyl oligoribonucleotide. According to 1H NMR spectroscopic studies, this nucleoside forms with Pd(2+) and uridine a ternary complex that is stable at a micromolar concentration range. CD spectroscopic studies on oligonucleotide hybridization, in turn, suggest that the Pd(2+) chelate of this artificial nucleoside, when incorporated in a 2'-O-methyl-RNA oligomer, is able to recognize thymine within an otherwise complementary DNA strand. The duplex containing thymidine opposite to the artificial nucleoside turned out to be somewhat more resistant to heating than its counterpart containing 2'-deoxycytidine in place of thymidine, but only in the presence of Pd(2+). According to UV-melting measurements, replacement of 2'-O-methyladenosine with the artificial nucleoside markedly enhances hybridization with a DNA target, irrespective of the identity of the opposite base and the presence of Pd(2+). With the thymidine containing DNA target, the T(m) value is 2-4°C higher than with targets containing any other nucleoside opposite to the artificial nucleoside, but the dependence on Pd(2+) is much less clear than in the case of the CD studies.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/196845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30659900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenghui Wang, Ke Zhang, Karen L Wooley, John-Stephen Taylor
{"title":"Imaging mRNA Expression in Live Cells via PNA·DNA Strand Displacement-Activated Probes.","authors":"Zhenghui Wang, Ke Zhang, Karen L Wooley, John-Stephen Taylor","doi":"10.1155/2012/962652","DOIUrl":"10.1155/2012/962652","url":null,"abstract":"<p><p>Probes for monitoring mRNA expression in vivo are of great interest for the study of biological and biomedical problems, but progress has been hampered by poor signal to noise and effective means for delivering the probes into live cells. Herein we report a PNA·DNA strand displacement-activated fluorescent probe that can image the expression of iNOS (inducible nitric oxide synthase) mRNA, a marker of inflammation. The probe consists of a fluorescein labeled antisense PNA annealed to a shorter DABCYL(plus)-labeled DNA which quenches the fluorescence, but when the quencher strand is displaced by the target mRNA the fluorescence is restored. DNA was used for the quencher strand to facilitate electrostatic binding of the otherwise netural PNA strand to a cationic shell crosslinked knedel-like (cSCK) nanoparticle which can deliver the PNA·DNA duplex probe into cells with less toxicity and greater efficiency than other transfection agents. RAW 264.7 mouse macrophage cells transfected with the iNOS PNA·DNA probe via the cSCK showed a 16 to 54-fold increase in average fluorescence per cell upon iNOS stimulation. The increase was 4 to 7-fold higher than that for a non-complementary probe, thereby validating the ability of a PNA·DNA strand displacement-activated probe to image mRNA expression in vivo.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30969650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}