{"title":"后基因组时代RNA结构与功能的化学研究。","authors":"Tae Suk Ro-Choi, Yong Chun Choi","doi":"10.1155/2012/369058","DOIUrl":null,"url":null,"abstract":"<p><p>In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5'-cap structures (types 0-III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work \"Function and Structure of Spliceosome\" in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/369058","citationCount":"3","resultStr":"{\"title\":\"Chemical approaches for structure and function of RNA in postgenomic era.\",\"authors\":\"Tae Suk Ro-Choi, Yong Chun Choi\",\"doi\":\"10.1155/2012/369058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5'-cap structures (types 0-III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work \\\"Function and Structure of Spliceosome\\\" in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.</p>\",\"PeriodicalId\":16575,\"journal\":{\"name\":\"Journal of Nucleic Acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/369058\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nucleic Acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/369058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/369058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
摘要
在细胞RNA化学研究中,几十年来研究的主要重点是序列确定。snrna (4.5S RNA I (Alu)、U1、U2、U3、U4、U5和U6)的结构是在德克萨斯州休斯顿的贝勒医学院测定的,时间早于基因组前时代。它们显示出新的修饰,包括碱基甲基化、糖甲基化、5'帽结构(0-III型)和序列异质性。这项工作提出了一个令人兴奋的转录后修饰问题,并通过前基因组、基因组和后基因组时代的技术革命取得了许多重大进展。目前,snRNA的研究在snRNA修饰的酶学、分子进化、剪接体组装机制、内含子去除的化学机制、剪接体中snRNA的高阶结构、剪接病理等方面取得了进展。这些工作注定要到达“剪接体的功能和结构”工作的最终途径,以及其他非编码rna在调控功能各方面的令人兴奋的新开发。
Chemical approaches for structure and function of RNA in postgenomic era.
In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5'-cap structures (types 0-III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work "Function and Structure of Spliceosome" in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.