Journal of Microbiology最新文献

筛选
英文 中文
Lactobacillus acidophilus KBL409 Ameliorates Atopic Dermatitis in a Mouse Model 嗜酸乳杆菌 KBL409 可改善小鼠模型中的特应性皮炎
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-02-22 DOI: 10.1007/s12275-024-00104-5
Woon-ki Kim, You Jin Jang, SungJun Park, Sung-gyu Min, Heeun Kwon, Min Jung Jo, GwangPyo Ko
{"title":"Lactobacillus acidophilus KBL409 Ameliorates Atopic Dermatitis in a Mouse Model","authors":"Woon-ki Kim, You Jin Jang, SungJun Park, Sung-gyu Min, Heeun Kwon, Min Jung Jo, GwangPyo Ko","doi":"10.1007/s12275-024-00104-5","DOIUrl":"https://doi.org/10.1007/s12275-024-00104-5","url":null,"abstract":"<p>Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of <i>Lactobacillus acidophilus</i> (<i>L. acidophilus</i>) KBL409 using a house dust mite (<i>Dermatophagoides farinae</i>)-induced in vivo AD model. Oral administration of <i>L. acidophilus</i> KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. <i>L. acidophilus</i> KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with <i>L. acidophilus</i> KBL409. Furthermore, <i>L. acidophilus</i> KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that <i>L. acidophilus</i> KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"47 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Furan-based Chalcone Annihilates the Multi-Drug-Resistant Pseudomonas aeruginosa and Protects Zebra Fish Against its Infection 呋喃基查尔酮消灭耐多药铜绿假单胞菌并保护斑马鱼免受感染
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-02-21 DOI: 10.1007/s12275-024-00103-6
Santosh Pushpa Ramya Ranjan Nayak, Catharine Basty, Seenivasan Boopathi, Loganathan Sumathi Dhivya, Khaloud Mohammed Alarjani, Mohamed Ragab Abdel Gawwad, Raghda Hager, Muthu Kumaradoss Kathiravan, Jesu Arockiaraj
{"title":"Furan-based Chalcone Annihilates the Multi-Drug-Resistant Pseudomonas aeruginosa and Protects Zebra Fish Against its Infection","authors":"Santosh Pushpa Ramya Ranjan Nayak, Catharine Basty, Seenivasan Boopathi, Loganathan Sumathi Dhivya, Khaloud Mohammed Alarjani, Mohamed Ragab Abdel Gawwad, Raghda Hager, Muthu Kumaradoss Kathiravan, Jesu Arockiaraj","doi":"10.1007/s12275-024-00103-6","DOIUrl":"https://doi.org/10.1007/s12275-024-00103-6","url":null,"abstract":"<p>The emergence of carbapenem-resistant <i>Pseudomonas aeruginosa</i>, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against <i>P. aeruginosa</i>. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against <i>P. aeruginosa</i>-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1β, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against <i>P. aeruginosa</i> demonstrated both in vitro and in vivo.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"469 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CA-CAS-01-A: A Permissive Cell Line for Isolation and Live Attenuated Vaccine Development Against African Swine Fever Virus. CA-CAS-01-A:用于分离和开发非洲猪瘟病毒减毒活疫苗的易感细胞系。
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-02-01 Epub Date: 2024-03-13 DOI: 10.1007/s12275-024-00116-1
Seung-Chul Lee, Yongkwan Kim, Ji-Won Cha, Kiramage Chathuranga, Niranjan Dodantenna, Hyeok-Il Kwon, Min Ho Kim, Weonhwa Jheong, In-Joong Yoon, Joo Young Lee, Sung-Sik Yoo, Jong-Soo Lee
{"title":"CA-CAS-01-A: A Permissive Cell Line for Isolation and Live Attenuated Vaccine Development Against African Swine Fever Virus.","authors":"Seung-Chul Lee, Yongkwan Kim, Ji-Won Cha, Kiramage Chathuranga, Niranjan Dodantenna, Hyeok-Il Kwon, Min Ho Kim, Weonhwa Jheong, In-Joong Yoon, Joo Young Lee, Sung-Sik Yoo, Jong-Soo Lee","doi":"10.1007/s12275-024-00116-1","DOIUrl":"10.1007/s12275-024-00116-1","url":null,"abstract":"<p><p>African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log<sub>10</sub> 7.5 ± 0.15 Ct value and TCID<sub>50</sub>/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD<sub>50</sub>/ml assay, TCID<sub>50</sub>/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"125-134"},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-135b Aggravates Fusobacterium nucleatum-Induced Cisplatin Resistance in Colorectal Cancer by Targeting KLF13. miR-135b 通过靶向 KLF13 使核分枝杆菌诱导的结直肠癌顺铂耐药性恶化
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-02-01 Epub Date: 2024-02-24 DOI: 10.1007/s12275-023-00100-1
Wei Zeng, Jia Pan, Guannan Ye
{"title":"miR-135b Aggravates Fusobacterium nucleatum-Induced Cisplatin Resistance in Colorectal Cancer by Targeting KLF13.","authors":"Wei Zeng, Jia Pan, Guannan Ye","doi":"10.1007/s12275-023-00100-1","DOIUrl":"10.1007/s12275-023-00100-1","url":null,"abstract":"<p><p>Cisplatin resistance is the main cause of colorectal cancer (CRC) treatment failure, and the cause has been reported to be related to Fusobacterium nucleatum (Fn) infection. In this study, we explored the role of Fn in regulating cisplatin resistance of CRC cells and its underlying mechanism involved. The mRNA and protein expressions were examined by qRT-PCR and western blot. Cell proliferation and cell apoptosis were assessed using CCK8 and flow cytometry assays, respectively. Dual-luciferase reporter gene assay was adopted to analyze the molecular interactions. Herein, our results revealed that Fn abundance and miR-135b expression were markedly elevated in CRC tissues, with a favorable association between the two. Moreover, Fn infection could increase miR-135b expression via a concentration-dependent manner, and it also enhanced cell proliferation but reduced apoptosis and cisplatin sensitivity by upregulating miR-135b. Moreover, KLF13 was proved as a downstream target of miR-135b, of which overexpression greatly diminished the promoting effect of miR-135b or Fn-mediated cisplatin resistance in CRC cells. In addition, it was observed that upstream 2.5 kb fragment of miR-135b promoter could be interacted by β-catenin/TCF4 complex, which was proved as an effector signaling of Fn. LF3, a blocker of β-catenin/TCF4 complex, was confirmed to diminish the promoting role of Fn on miR-135b expression. Thus, it could be concluded that Fn activated miR-135b expression through TCF4/β-catenin complex, thereby inhibiting KLF13 expression and promoting cisplatin resistance in CRC.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"63-73"},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of Chryseno[2,1,c]oxepin-12-Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05-2, and Analysis of Its Anti-inflammatory Activity. 太尔曲霉 TMZ05-2 从甘草酸中生物合成 Chryseno[2,1,c]oxepin-12-Carboxylic Acid 及其抗炎活性分析。
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-02-01 Epub Date: 2024-02-27 DOI: 10.1007/s12275-024-00105-4
Liangliang Chen, Lin Zhao, Ju Han, Ping Xiao, Mingzhe Zhao, Sen Zhang, Jinao Duan
{"title":"Biosynthesis of Chryseno[2,1,c]oxepin-12-Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05-2, and Analysis of Its Anti-inflammatory Activity.","authors":"Liangliang Chen, Lin Zhao, Ju Han, Ping Xiao, Mingzhe Zhao, Sen Zhang, Jinao Duan","doi":"10.1007/s12275-024-00105-4","DOIUrl":"10.1007/s12275-024-00105-4","url":null,"abstract":"<p><p>Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"113-124"},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity 本地抗生素耐药沙门氏菌分离物的流行及其在探索具有广谱特异性的溶菌噬菌体 vB_SalS_KFSSM 中的应用
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-01-02 DOI: 10.1007/s12275-023-00098-6
{"title":"Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity","authors":"","doi":"10.1007/s12275-023-00098-6","DOIUrl":"https://doi.org/10.1007/s12275-023-00098-6","url":null,"abstract":"<h3>Abstract</h3> <p>The consumption of fresh produce has led to increase in antibiotic-resistant (AR) <em>Salmonella</em> outbreaks. In this study, indigenous <em>Salmonella</em> was isolated from a total of two hundred-two samples including fresh produce and agricultural environmental samples in Korea. After biochemical confirmation using the Indole, Methyl Red, Voges-Proskauer, Citrate tests, presumable <em>Salmonella</em> isolates were identified by 16S rRNA sequencing. Identified <em>Salmonella</em> isolates were evaluated for antibiotic susceptibility against twenty-two antibiotics. The specificity and the efficiency of plating (EOP) of vB_SalS_KFSSM were evaluated against fifty-three bacterial strains. Twenty-five suspected <em>Salmonella</em> were isolated and confirmed by the positive result for methyl red and citrate, of which ten were identified as <em>Salmonella</em> spp. through 16S rRNA gene sequencing. Eight <em>Salmonella</em> isolates (4.0%, n = 8/202) were resistant to at least one antibiotic, among which five were multi-drug resistant. As a lytic phage against <em>Salmonella</em> spp. CMGS-1, vB_SalS_KFSSM was isolated from cow manure. The phage was observed as a tailed phage belonging to the class <em>Caudoviricetes</em>. It exhibited an intra-broad specificity against four indigenous AR <em>Salmonella</em> isolates, two indigenous <em>Salmonella</em> isolates, and five other <em>Salmonella</em> serotypes with great efficiencies (EOP ≥ 0.75). Thus, this study suggested the potential of vB_SalS_KFSSM to combat indigenous AR <em>Salmonella</em>.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LAMMER Kinase Governs the Expression and Cellular Localization of Gas2, a Key Regulator of Flocculation in Schizosaccharomyces pombe. LAMMER 激酶调控絮凝关键调控因子 Gas2 的表达和细胞定位
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-01-01 Epub Date: 2024-01-05 DOI: 10.1007/s12275-023-00097-7
Won-Hwa Kang, Yoon-Dong Park, Joo-Yeon Lim, Hee-Moon Park
{"title":"LAMMER Kinase Governs the Expression and Cellular Localization of Gas2, a Key Regulator of Flocculation in Schizosaccharomyces pombe.","authors":"Won-Hwa Kang, Yoon-Dong Park, Joo-Yeon Lim, Hee-Moon Park","doi":"10.1007/s12275-023-00097-7","DOIUrl":"10.1007/s12275-023-00097-7","url":null,"abstract":"<p><p>It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated to the wild-type strain, it displayed flocculation. Gas2, a 1,3-β-glucanosyl transferase, was isolated from the EDTA-extracted cell-surface proteins in the Δlkh1 strain. While disruption of the gas2<sup>+</sup> gene was not lethal and reduced the flocculation activity of the ∆lkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the flocculation of fission yeast. In addition, we identified the regulation of mbx2<sup>+</sup> expression by Lkh1 using RT-qPCR. Taken together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription of gas2<sup>+</sup> through Mbx2.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"21-31"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering. 利用 Cas9 靶向和红色重组技术设计噬菌体工程。
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-01-01 Epub Date: 2024-02-01 DOI: 10.1007/s12275-024-00107-2
Shin-Yae Choi, Danitza Xiomara Romero-Calle, Han-Gyu Cho, Hee-Won Bae, You-Hee Cho
{"title":"Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering.","authors":"Shin-Yae Choi, Danitza Xiomara Romero-Calle, Han-Gyu Cho, Hee-Won Bae, You-Hee Cho","doi":"10.1007/s12275-024-00107-2","DOIUrl":"10.1007/s12275-024-00107-2","url":null,"abstract":"<p><p>Bacteriophages (phages) are natural antibiotics and biological nanoparticles, whose application is significantly boosted by recent advances of synthetic biology tools. Designer phages are synthetic phages created by genome engineering in a way to increase the benefits or decrease the drawbacks of natural phages. Here we report the development of a straightforward genome engineering method to efficiently obtain engineered phages in a model bacterial pathogen, Pseudomonas aeruginosa. This was achieved by eliminating the wild type phages based on the Streptococcus pyogenes Cas9 (SpCas9) and facilitating the recombinant generation based on the Red recombination system of the coliphage λ (λRed). The producer (PD) cells of P. aeruginosa strain PAO1 was created by miniTn7-based chromosomal integration of the genes for SpCas9 and λRed under an inducible promoter. To validate the efficiency of the recombinant generation, we created the fluorescent phages from a temperate phage MP29. A plasmid bearing the single guide RNA (sgRNA) gene for selectively targeting the wild type gp35 gene and the editing template for tagging the Gp35 with superfolder green fluorescent protein (sfGFP) was introduced into the PD cells by electroporation. We found that the targeting efficiency was affected by the position and number of sgRNA. The fluorescent phage particles were efficiently recovered from the culture of the PD cells expressing dual sgRNA molecules. This protocol can be used to create designer phages in P. aeruginosa for both application and research purposes.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1-10"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavivirga spongiicola sp. nov. and Flavivirga abyssicola sp. nov., Isolated from Marine Environments. 从海洋环境中分离出来的 Flavivirga spongiicola sp.
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-01-01 Epub Date: 2024-02-06 DOI: 10.1007/s12275-023-00102-z
Sung-Hyun Yang, Mi-Jeong Park, Hyun-Myung Oh, Yeong-Jun Park, Kae Kyoung Kwon
{"title":"Flavivirga spongiicola sp. nov. and Flavivirga abyssicola sp. nov., Isolated from Marine Environments.","authors":"Sung-Hyun Yang, Mi-Jeong Park, Hyun-Myung Oh, Yeong-Jun Park, Kae Kyoung Kwon","doi":"10.1007/s12275-023-00102-z","DOIUrl":"10.1007/s12275-023-00102-z","url":null,"abstract":"<p><p>Two novel Gram-stain-negative, strictly-aerobic, rod-shaped (1.2 ± 3.4 μm × 0.3 ± 0.7 μm), and non-motile marine bacterial species, designated MEBiC05379<sup>T</sup> and MEBiC07777<sup>T</sup>, were isolated from a marine sponge Pseudaxinella sp. in Gangneung City and deep-sea sediments of the Ulleung basin in the East Sea of Korea, respectively. The 16S rRNA gene sequence analysis revealed high levels of similarities between these strains and members of the genus Flavivirga (97.0-98.4% sequence identities). Both novel strains revealed as mesophilic, neutrophilic in pH and slightly halophilic. Similar to those of other Flavivirga members, the primary cellular fatty acids of both strains were iso-C<sub>15:0</sub>, iso-C<sub>15:1</sub> G, iso-C<sub>15:03</sub>-OH, and iso-C<sub>17:0</sub> 3-OH, with MEBiC05379<sup>T</sup> and MEBiC07777<sup>T</sup> containing relatively higher proportions of C<sub>12:0</sub> and summed feature 3 (C<sub>16:1</sub>ω7c and/or C<sub>16:1</sub>ω6c). In both taxa, the major isoprenoid quinone was MK-6. The DNA G + C contents of MEBiC05379<sup>T</sup> and MEBiC07777<sup>T</sup> genomes were 32.62 and 32.46 mol%, respectively. Compared to other members of Flavivirga, both strains exhibited similar DNA G + C ratio and fatty acids pattern, yet enzyme expression and carbon sources utilization pattern were different. Genomes of the genus Flavivirga showed enzyme preferences to fucoidan and sulfated galactans. Considering the monophyly rule, AAI values delineate the genus Flavivirga from adjacent genera calculated to be 76.0-78.7%. Based on the phenotypic, genomic and biochemical data, strains for MEBiC05379<sup>T</sup> and MEBiC07777<sup>T</sup> thus represent two novel species in the genus Flavivirga, for which the names Flavivirga spongiicola sp. nov. (MEBiC05379<sup>T</sup> [= KCTC 92527<sup> T</sup> = JCM 16662<sup> T</sup>]), and Flavivirga abyssicola sp. nov. (MEBiC07777<sup>T</sup> [= KCTC 92563<sup> T</sup> = JCM 36477<sup> T</sup>]) are proposed.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"11-19"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant. 鼠伤寒沙门氏菌及其 rnc 突变体中鞭毛相关基因的转录组比较分析
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-01-01 Epub Date: 2024-01-05 DOI: 10.1007/s12275-023-00099-5
Seungmok Han, Ji-Won Byun, Minho Lee
{"title":"Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant.","authors":"Seungmok Han, Ji-Won Byun, Minho Lee","doi":"10.1007/s12275-023-00099-5","DOIUrl":"10.1007/s12275-023-00099-5","url":null,"abstract":"<p><p>Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (∆rnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the ∆rnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and ∆rnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"33-48"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139106225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信