Sebastian Munck, Christof De Bo, Christopher Cawthorne, Julien Colombelli
{"title":"Innovating in a bioimaging core through instrument development","authors":"Sebastian Munck, Christof De Bo, Christopher Cawthorne, Julien Colombelli","doi":"10.1111/jmi.13312","DOIUrl":"10.1111/jmi.13312","url":null,"abstract":"<p>Developing devices and instrumentation in a bioimaging core facility is an important part of the innovation mandate inherent in the core facility model but is a complex area due to the required skills and investments, and the impossibility of a universally applicable model. Here, we seek to define technological innovation in microscopy and situate it within the wider core facility innovation portfolio, highlighting how strategic development can accelerate access to innovative imaging modalities and increase service range, and thus maintain the cutting edge needed for sustainability. We consider technology development from the perspective of core facility staff and their stakeholders as well as their research environment and aim to present a practical guide to the ‘Why, When, and How’ of developing and integrating innovative technology in the core facility portfolio.</p><p>Core facilities need to innovate to stay up to date. However, how to carry out the innovation is not very obvious. One area of innovation in imaging core facilities is the building of optical setups. However, the creation of optical setups requires specific skill sets, time, and investments. Consequently, the topic of whether a core facility should develop optical devices is discussed as controversial. Here, we provide resources that should help get into this topic, and we discuss different options when and how it makes sense to build optical devices in core facilities. We discuss various aspects, including consequences for staff and the relation of the core to the institute, and also broaden the scope toward other areas of innovation.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"294 3","pages":"319-337"},"PeriodicalIF":2.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13312","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Araf Al Rafi, Begoña Santillana, Renfei Feng, Brian G. Thomas, André B. Phillion
{"title":"Analysis of microscopy techniques to measure segregation in continuous-cast steel slabs","authors":"Araf Al Rafi, Begoña Santillana, Renfei Feng, Brian G. Thomas, André B. Phillion","doi":"10.1111/jmi.13310","DOIUrl":"10.1111/jmi.13310","url":null,"abstract":"<p>The accurate characterisation of centreline segregation requires precise measurements of composition variations over large length scales (10<span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow></mrow>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$^{-1}$</annotation>\u0000 </semantics></math> <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>${rm {m}}$</annotation>\u0000 </semantics></math>) across the centreline of the cast product, while having high resolution, sufficient to quantify the significant composition variations between dendrites due to microsegregation at very small length scales (10<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow></mrow>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>5</mn>\u0000 </mrow>\u0000 </msup>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation>$^{-5}{rm {m}}$</annotation>\u0000 </semantics></math>). This study investigates the potential of a novel microscopy technique, named Synchrotron Micro X-ray Flurorescence (SMXRF), to generate large-scale high-resolution segregation maps from a steel sample taken from a thin slab caster. Two methods, Point Analysis and Regression Analysis, are proposed for SMXRF data calibration. By comparing with the traditional Laser-Induced Breakdown Spectroscopy (LIBS), and Electron Probe Micro Analyser (EPMA) techniques, we show that SMXRF is successful in quantitative characterisation of centreline segregation. Over large areas (e.g. 12 <span></span><math>\u0000 <semantics>\u0000 <mo>×</mo>\u0000 <annotation>$times$</annotation>\u0000 </semantics></math> 16 <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>mm</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>${rm {mm}}^2$</annotation>\u0000 </semantics></math>) and at high resolution (10–50 <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation>$mutext{m}$</annotation>\u0000 </semantics></math> pixel size) various techniques yield comparable outcomes in terms of composition maps and solute profiles. The findings also highlight the importance of both high spatial resolution and large field of view to have a quantitative, accurate, and efficient measurement tool to investigate segregation phenomena.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"295 3","pages":"266-277"},"PeriodicalIF":1.5,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13310","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-shot differential phase contrast microscopy using ring-shaped polarisation multiplexing illumination","authors":"Shengping Wang, Yifu Ma, Mengyuan Xie, Manhong Yao, Zibang Zhang, Jingang Zhong","doi":"10.1111/jmi.13309","DOIUrl":"10.1111/jmi.13309","url":null,"abstract":"<p>We propose a differential phase contrast microscopy that enables single-shot phase imaging for unstained biological samples. The proposed approach employs a ring-shaped LED array for polarisation multiplexing illumination and a polarisation camera for image acquisition. As such, multiple images of different polarisation angles can be simultaneously captured with a single shot. Through polarisation demultiplexing, the sample phase can therefore be recovered from the single-shot measurement. Both simulations and experiments demonstrate the effectiveness of the approach. We also demonstrate that ring-shaped illumination enables higher contrast and lower-distortion imaging results than disk-shaped illumination does. The proposed single-shot approach potentially enables phase contrast imaging for live cell samples in vitro.</p><p><b>Lay Description</b>: We propose a microscopy that enables imaging of transparent samples, unstained cells, etc. We demonstrate that the proposed method enables higher contrast and lower-distortion imaging results than conventional methods, and significantly improves imaging efficiency. The proposed method potentially enables dynamic imaging for live cell samples in vitro.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"295 3","pages":"257-265"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oliver Renaud, Nathalie Aulner, Audrey Salles, Nadia Halidi, Maia Brunstein, Adeline Mallet, Karin Aumayr, Stefan Terjung, Daniel Levy, Saskia Lippens, Jean-Marc Verbavatz, Thomas Heuser, Rachel Santarella-Mellwig, Jean-Yves Tinevez, Tatiana Woller, Alexander Botzki, Christopher Cawthorne, The Core4Life Consortium, Sebastian Munck
{"title":"Staying on track – Keeping things running in a high-end scientific imaging core facility","authors":"Oliver Renaud, Nathalie Aulner, Audrey Salles, Nadia Halidi, Maia Brunstein, Adeline Mallet, Karin Aumayr, Stefan Terjung, Daniel Levy, Saskia Lippens, Jean-Marc Verbavatz, Thomas Heuser, Rachel Santarella-Mellwig, Jean-Yves Tinevez, Tatiana Woller, Alexander Botzki, Christopher Cawthorne, The Core4Life Consortium, Sebastian Munck","doi":"10.1111/jmi.13304","DOIUrl":"10.1111/jmi.13304","url":null,"abstract":"<p>Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"294 3","pages":"276-294"},"PeriodicalIF":2.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tales from the crick: The art of demo","authors":"Matthew J. Renshaw, Camille Charoy","doi":"10.1111/jmi.13305","DOIUrl":"10.1111/jmi.13305","url":null,"abstract":"<p>Equipment demonstrations (demos) play an important role in the evaluation of new systems. As well as the excitement of exploring emerging technologies, a well-organised demo can help guide procurement decisions and support funding applications. However, it is easy to underestimate the substantial effort required both before and following the demo to maximise its potential impact. Here, we discuss how our approach to demos at the Crick Advanced Light Microscopy Science and Technology Platform (CALM-STP) has evolved over the last few years, emphasising the importance of a documented approach that combines quantitative with qualitative comparisons and engages with your user base in order to build up support for any potential system purchase.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"294 3","pages":"308-318"},"PeriodicalIF":2.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13305","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Cremer, Florian Schock, Antonio Virgilio Failla, Udo Birk
{"title":"Modulated illumination microscopy: Application perspectives in nuclear nanostructure analysis","authors":"Christoph Cremer, Florian Schock, Antonio Virgilio Failla, Udo Birk","doi":"10.1111/jmi.13297","DOIUrl":"10.1111/jmi.13297","url":null,"abstract":"<p>The structure of the cell nucleus of higher organisms has become a major topic of advanced light microscopy. So far, a variety of methods have been applied, including confocal laser scanning fluorescence microscopy, 4Pi, STED and localisation microscopy approaches, as well as different types of patterned illumination microscopy, modulated either laterally (in the object plane) or axially (along the optical axis). Based on our experience, we discuss here some application perspectives of Modulated Illumination Microscopy (MIM) and its combination with single-molecule localisation microscopy (SMLM). For example, spatially modulated illumination microscopy/SMI (illumination modulation along the optical axis) has been used to determine the axial extension (size) of small, optically isolated fluorescent objects between ≤ 200 nm and ≥ 40 nm diameter with a precision down to the few nm range; it also allows the axial positioning of such structures down to the 1 nm scale; combined with laterally structured illumination/SIM, a 3D localisation precision of ≤1 nm is expected using fluorescence yields typical for SMLM applications. Together with the nanosizing capability of SMI, this can be used to analyse macromolecular nuclear complexes with a resolution approaching that of cryoelectron microscopy.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"296 2","pages":"121-128"},"PeriodicalIF":1.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface passivation and functionalisation for mass photometry","authors":"Jenny Sülzle, Laila Elfeky, Suliana Manley","doi":"10.1111/jmi.13302","DOIUrl":"10.1111/jmi.13302","url":null,"abstract":"<p>Interferometric scattering (iSCAT) microscopy enables the label-free observation of biomolecules. Consequently, single-particle imaging and tracking with the iSCAT-based method known as mass photometry (MP) is a growing area of study. However, establishing reliable cover glass passivation and functionalisation methods is crucial to reduce nonspecific binding and prepare surfaces for in vitro single-molecule binding experiments. Existing protocols for fluorescence microscopy can contain strongly scattering or mobile components, which make them impractical for MP-based microscopy. In this study, we characterise several different surface coatings using MP. We present approaches for cover glass passivation using 3-aminopropyltriethoxysilane (APTES) and polyethylene glycol (PEG, 2k) along with functionalisation via a maleimide-thiol linker. These coatings are compatible with water or salt buffers, and show low background scattering; thus, we are able to measure proteins as small as 60 kDa. In this technical note, we offer a surface preparation suitable for in vitro experiments with MP.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"295 1","pages":"14-20"},"PeriodicalIF":2.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sulphate resistance of low-clinker engineered cementitious composites examined by MicroXRF imaging","authors":"Connor Szeto, Kimberly E. Kurtis","doi":"10.1111/jmi.13303","DOIUrl":"https://doi.org/10.1111/jmi.13303","url":null,"abstract":"<p>Engineered cementitious composites (ECC) are a class of high-performing fibre-reinforced cementitious materials recognised for their increased ductility and durability compared to conventional cement-based materials, owing to their autogenously controlled tight crack widths, even when subjected to high strains. To reduce ECC's environmental impact, this research examines the use of a low-clinker binder − limestone-calcined clay cement (LC3) − as an alternative to portland cement (PC), along with fly ash to further reduce the clinker proportion and the embodied CO<sub>2</sub> of the formulations. In conventional concrete, LC3 hydrates to a denser microstructure resulting from the synergistic reaction between limestone and calcined clay. At the lower water contents typical of ECC and with the presence of fly ash, the influence of the binder composition on the microstructure is difficult to anticipate.</p><p>To examine the influence of these compositional variables on microstructure, permeability and durability, the sulphate resistance of LC3-based ECC is explored. Specifically, the ECC-LC3 blends are designed with high clinker replacement rate of 75% by mass of binder and contain either conventional fly ash or reclaimed fly ash at 50% by mass of binder. Expansion of ECC-LC3 samples subjected to standard sodium sulphate test conditions was measured up to 12 months and the depth of penetration of sulphates into the ECC-LC3 of varying compositions was quantified using micro-X-Ray Fluorescence (microXRF) imaging and modelling. The expansion results show that the ECC-LC3 formulations performed better than the PC samples and can provide adequate resistance to external sulphate attack, even when reclaimed fly ashes are used in place of the conventional ash. In addition, the shallow penetration of sulphate into these cementitious composites demonstrates the low diffusion coefficients values that were determined using the quantitative data from MicroXRF imaging.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"294 2","pages":"239-250"},"PeriodicalIF":2.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction for special issue: 19th Euroseminar on Microscopy Applied to Building Materials (EMABM) 2024","authors":"Alexander Wetzel","doi":"10.1111/jmi.13299","DOIUrl":"https://doi.org/10.1111/jmi.13299","url":null,"abstract":"","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"294 2","pages":"65"},"PeriodicalIF":2.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}