Journal of microbiology and biotechnology最新文献

筛选
英文 中文
Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies. 发掘肠道微生物组的心脏保护潜力:探索治疗策略。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-06-25 DOI: 10.4014/jmb.2405.05019
Jun Qu, Fantao Meng, Zhen Wang, Wenhao Xu
{"title":"Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies.","authors":"Jun Qu, Fantao Meng, Zhen Wang, Wenhao Xu","doi":"10.4014/jmb.2405.05019","DOIUrl":"10.4014/jmb.2405.05019","url":null,"abstract":"<p><p>The microbial community inhabiting the human gut resembles a bustling metropolis, wherein beneficial bacteria play pivotal roles in regulating our bodily functions. These microorganisms adeptly break down resilient dietary fibers to fuel our energy, synthesize essential vitamins crucial for our well-being, and maintain the delicate balance of our immune system. Recent research indicates a potential correlation between alterations in the composition and activities of these gut microbes and the development of coronary artery disease (CAD). Consequently, scientists are delving into the intriguing realm of manipulating these gut inhabitants to potentially mitigate disease risks. Various promising strategies have emerged in this endeavor. Studies have evidenced that probiotics can mitigate inflammation and enhance the endothelial health of our blood vessels. Notably, strains such as Lactobacilli and Bifidobacteria have garnered substantial attention in both laboratory settings and clinical trials. Conversely, prebiotics exhibit anti-inflammatory properties and hold potential in managing conditions like hypertension and hypercholesterolemia. Synbiotics, which synergistically combine probiotics and prebiotics, show promise in regulating glucose metabolism and abnormal lipid profiles. However, uncertainties persist regarding postbiotics, while antibiotics are deemed unsuitable due to their potential adverse effects. On the other hand, TMAO blockers, such as 3,3-dimethyl-1-butanol, demonstrate encouraging outcomes in laboratory experiments owing to their anti-inflammatory and tissue-protective properties. Moreover, fecal transplantation, despite yielding mixed results, warrants further exploration and refinement. In this comprehensive review, we delve into the intricate interplay between the gut microbiota and CAD, shedding light on the multifaceted approaches researchers are employing to leverage this understanding for therapeutic advancements.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2413-2424"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Tea Attenuates the Particulate Matter (PM)2.5-Exposed Gut-Brain Axis Dysfunction through Regulation of Intestinal Microenvironment and Hormonal Changes. 绿茶通过调节肠道微环境和激素变化减轻颗粒物(PM)2.5暴露的肠脑轴功能障碍
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-10-31 DOI: 10.4014/jmb.2409.09035
Jong Min Kim, Hyo Lim Lee, Min Ji Go, Hyun-Jin Kim, Mi Jeong Sung, Ho Jin Heo
{"title":"Green Tea Attenuates the Particulate Matter (PM)<sub>2.5</sub>-Exposed Gut-Brain Axis Dysfunction through Regulation of Intestinal Microenvironment and Hormonal Changes.","authors":"Jong Min Kim, Hyo Lim Lee, Min Ji Go, Hyun-Jin Kim, Mi Jeong Sung, Ho Jin Heo","doi":"10.4014/jmb.2409.09035","DOIUrl":"10.4014/jmb.2409.09035","url":null,"abstract":"<p><p>Chronic exposure to particulate matter (PM)<sub>2.5</sub> causes brain damage through intestinal imbalance. This study was estimated to confirm the regulatory activity of green tea against chronic PM<sub>2.5</sub> exposure-induced abnormal gut-brain axis (GBA) in BALB/c mice. The green tea, as an aqueous extract of matcha (EM), ameliorated the colon length, short chain fatty acid contents, antioxidant biomarkers, myeloperoxidase (MPO) activity, and serum inflammatory cytokines. EM regulated the gut microbiota related to tryptophan intake and hormone metabolism. EM showed regulatory effect of intestinal tight junction (TJ) protein, inflammatory response, and apoptotic biomarkers. In addition, EM improved PM<sub>2.5</sub>-induced tryptophan-related hormonal metabolic dysfunction in intestinal tissue and serum. Through the ameliorating effect on GBA function, the consumption of EM presented the protective effect against inflammatory effect, apoptosis, synaptic damage, and hormonal activity in cerebral tissue, and suppressed abnormal change of brain lipid metabolites. In particular, EM intake showed relatively excellent improvement effects on indicators including <i>Bacteroides</i>, <i>Ruminococcus</i>, <i>Murinobaculaceae</i>, <i>Allopreyotella</i>, cyclooxygenase-2 (COX-2), acetylcholinesterase (AChE), 11,12-dihydroxyeicosatrienoic acid (DHET), and intestinal acetate from the PM group. These findings indicate that the dietary intake of EM might provide a regulatory effect against PM<sub>2.5</sub>-exposed GBA dysfunction via the intestinal microbiota and hormonal changes.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2492-2505"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a New Isoxsuprine Hydrochloride-Based Hydroxylated Compound with Potent Antioxidant and Anti-Inflammatory Activities. 开发具有强效抗氧化和抗炎活性的新型盐酸异舒普林羟基化合物
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-10-03 DOI: 10.4014/jmb.2405.05031
Chien-Yu Wu, Hsiou-Yu Ding, Tzi-Yuan Wang, Chun-Wei Liu, Jiumn-Yih Wu, Te-Sheng Chang
{"title":"Development of a New Isoxsuprine Hydrochloride-Based Hydroxylated Compound with Potent Antioxidant and Anti-Inflammatory Activities.","authors":"Chien-Yu Wu, Hsiou-Yu Ding, Tzi-Yuan Wang, Chun-Wei Liu, Jiumn-Yih Wu, Te-Sheng Chang","doi":"10.4014/jmb.2405.05031","DOIUrl":"10.4014/jmb.2405.05031","url":null,"abstract":"<p><p>The scientific community actively pursuits novel compounds with biological activities. In this context, our study utilized the predicted data mining approach (PDMA), which can efficiently screen out biotransformable precursor candidates to produce new bioactive compounds. The PDMA was applied to <i>Bacillus megaterium</i> tyrosinase (<i>Bm</i>TYR) to form new bioactive hydroxyl compounds from isoxsuprine hydrochloride (isoxsuprine). The results show that isoxsuprine could be biotransformed by <i>Bm</i>TYR to form a new compound, 3''-hydroxyisoxsuprine. 3''-Hydroxyisoxsuprine exhibited 40-fold and 10-fold higher potent antioxidant and anti-inflammation activities than the precursor, isoxsuprine. The 3''-hydroxyisoxsuprine effectively mitigates the hyperimmune response in RAW 264.7 macrophages by inhibiting the upregulation of pro-inflammatory cytokine (IL-1β and IL-6) and inflammatory enzyme COX-2 gene expression triggered by LPS stimulation. This study illustrates that PDMA is an effective strategy for screening known natural and chemical compounds and for generating new bioactive compounds through biotransformation. Our newly produced compound has potential future applications in pharmacology and biotechnology.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2693-2701"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Biphasic Activity of Auricularia Auricula-Judae Extract on Bone Homeostasis through Inhibition of Osteoclastogenesis and Modulation of Osteogenic Activity. 黑木耳提取物通过抑制破骨细胞生成和调节成骨活性对骨稳态的双相作用
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-10-28 DOI: 10.4014/jmb.2408.08055
Shin-Hye Kim, Hye-Lim Shin, Tae Hyun Son, Dongsoo Kim, Hwan-Gyu Kim, Jae-Han Cho, Sik-Won Choi
{"title":"The Biphasic Activity of Auricularia Auricula-Judae Extract on Bone Homeostasis through Inhibition of Osteoclastogenesis and Modulation of Osteogenic Activity.","authors":"Shin-Hye Kim, Hye-Lim Shin, Tae Hyun Son, Dongsoo Kim, Hwan-Gyu Kim, Jae-Han Cho, Sik-Won Choi","doi":"10.4014/jmb.2408.08055","DOIUrl":"10.4014/jmb.2408.08055","url":null,"abstract":"<p><p>Osteoporosis arises from the disturbance of bone homeostasis, a process regulated by osteoblasts and osteoclasts. The treatment and prevention of bone metabolic disorders resulting from an imbalance in bone homeostasis require the use of agents that effectively promote both bone formation and anti-resorptive effects. Therefore, an investigation was carried out to determine the potential of the edible mushroom <i>Auricularia auricula-judae</i> in modulating bone remodeling by inhibiting RANKL-induced osteoclastogenesis and enhancing BMP-2-stimulated osteoblast differentiation. Moreover, this study assessed the mode of action of the <i>Auricularia auricula-judae</i> extracts. The staining of tartrate-resistant acid phosphatase (TRAP), a marker for osteoclast activity, demonstrated that <i>Auricularia auricula-judae</i> water extract (AAJWE) inhibited the formation of multinucleated osteoclasts while exhibiting no cytotoxic effects. The study demonstrated that AAJWE reduced RANKL-induced osteoclast differentiation by inhibiting c-Fos/NFATc1 through the inhibition of ERK and JNK phosphorylation during the RANKL-induced osteoclast differentiation. Moreover, AAJWE exhibited a dose-dependent induction of ALP expression in the presence of BMP-2 during osteoblast differentiation. The AAJWE strengthened BMP-2-induced osteogenesis through the activation of Runx2 and Smad phosphorylation. Therefore, AAJWE emerges as a promising candidate for both prevention and therapy owing to its biphasic effect, which aids in the preservation of bone homeostasis.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2576-2585"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kjellmaniella crassifolia Reduces Lipopolysaccharide-Induced Inflammation in Caco-2 Cells and Ameliorates Loperamide-Induced Constipation in Mice. Kjellmaniella crassifolia能减轻脂多糖诱导的Caco-2细胞炎症,并能改善洛哌丁胺诱导的小鼠便秘。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-10-01 DOI: 10.4014/jmb.2407.07036
Kirinde Gedara Isuru Sandanuwan Kirindage, Arachchige Maheshika Kumari Jayasinghe, Mi-Soon Jang, Ka-Jung Lee, Hyun-Jung Yun, Ginnae Ahn, Jae-Young Oh
{"title":"<i>Kjellmaniella crassifolia</i> Reduces Lipopolysaccharide-Induced Inflammation in Caco-2 Cells and Ameliorates Loperamide-Induced Constipation in Mice.","authors":"Kirinde Gedara Isuru Sandanuwan Kirindage, Arachchige Maheshika Kumari Jayasinghe, Mi-Soon Jang, Ka-Jung Lee, Hyun-Jung Yun, Ginnae Ahn, Jae-Young Oh","doi":"10.4014/jmb.2407.07036","DOIUrl":"10.4014/jmb.2407.07036","url":null,"abstract":"<p><p>Gastrointestinal disorders are widespread globally, with inflammatory diseases being particularly prominent. This study aimed to investigate the effect of <i>Kjellmaniella crassifolia</i> hot water extract (KCH) on lipopolysaccharide (LPS)-induced inflammation in human intestinal epithelial (Caco-2) cells and loperamide-induced constipation in BALB/c mice. The study's findings revealed that KCH dose-dependently increased the cell viability and reduced the NO production by decreasing the iNOS and COX-2 expression in LPS-stimulated Caco-2 cells. Also, KCH downregulated the mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) by regulating the activation of MAPK and NF-κB signaling pathways in LPS-stimulated Caco-2 cells. In addition, KCH increased the expression levels of tight junction proteins, occludin, ZO-1, and claudin-1 in a dose-dependent manner. Furthermore, in vivo study outcomes demonstrated that KCH improved intestinal transit, increased fecal moisture content, and reduced fecal impaction in constipated mice. KCH decreased the mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), thereby increasing the expression levels of intestinal tight junction proteins (occludin, ZO-1, and claudin-1) in the small intestine tissues of the experimental mice. These proteins may help regulate intestinal motility and improve stool passage, thus reducing constipation. These findings suggest that KCH could be a promising functional food ingredient for managing intestinal inflammation, inflammation-related disorders, constipation, and the pathophysiology of constipation.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2565-2575"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ELF3 Overexpression Contributes to the Malignant Transformation of HPV16 E6/E7-Immortalized Keratinocytes by Promoting CCNE2 Expression. ELF3 的过表达通过促进 CCNE2 的表达,有助于 HPV16 E6/ E7 细胞的恶性转化。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-10-30 DOI: 10.4014/jmb.2408.08041
Yingping Zhu, Wenjuan Yang, Yulong Zhuang, Feifei Wang, Yanlu Ge, Jun Jiang, Danping Feng
{"title":"ELF3 Overexpression Contributes to the Malignant Transformation of HPV16 E6/E7-Immortalized Keratinocytes by Promoting CCNE2 Expression.","authors":"Yingping Zhu, Wenjuan Yang, Yulong Zhuang, Feifei Wang, Yanlu Ge, Jun Jiang, Danping Feng","doi":"10.4014/jmb.2408.08041","DOIUrl":"10.4014/jmb.2408.08041","url":null,"abstract":"<p><p>Current cancer burden caused by persistent infection with human papillomaviruse genotype 16 (HPV16) cannot be ignored. The related mechanisms of oncoproteins E6 and E7 from HPV16 on keratinocyte malignant transformation need to be further elucidated. GSE3292 dataset analysis revealed the upregulation of ETS transcription factor 3 (ELF3) and cyclin E2 (CCNE2). To verify whether there is an interaction between ELF3 and CCNE2, E74 like ELF3 and CCNE2 expression profiles as well as their putative binding sites were analyzed using bioinformatics. Retroviruses encoding HPV16 E6 and E7 genes were used to induce immortalization of human foreskin keratinocytes (HFKs) in vitro. Dual luciferase reporters assay was used to verify the binding of ELF3 and CCNE2. The effect of ELF3 on the immortalized cells was investigated using CCK-8 assay, cell cycle analysis and western blot. ELF3 and CCNE2 presented overexpression patterns in head and neck squamous cell carcinoma. HPV16 E6/E7-expressing HFKs showed enhanced viability, accelerated cell cycle as well as upregulated ELF3 and CCNE2. ELF3 overexpression enhanced the activity of CCNE2 promoter. ELF3 silencing reduced viability, induced cell cycle arrest and suppressed expressions of CCNE2, E6 and E7 in HPV16 E6/E7-expressing HFKs. Downregulation of ELF3 played an inhibiting role in the malignant transformation of HPV16 E6/E7-immortalized HFKs by decreasing CCNE2 expression.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2484-2491"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melissa officinalis Regulates Lipopolysaccharide-Induced BV2 Microglial Activation via MAPK and Nrf2 Signaling. Melissa officinalis 通过 MAPK 和 Nrf2 信号调节脂多糖诱导的 BV2 微神经胶质细胞活化
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-10-29 DOI: 10.4014/jmb.2409.09020
Ji-Won Choi, Sang Yoon Choi, Guijae Yoo, Ho-Young Park, In-Wook Choi, Jinyoung Hur
{"title":"<i>Melissa officinalis</i> Regulates Lipopolysaccharide-Induced BV2 Microglial Activation via MAPK and Nrf2 Signaling.","authors":"Ji-Won Choi, Sang Yoon Choi, Guijae Yoo, Ho-Young Park, In-Wook Choi, Jinyoung Hur","doi":"10.4014/jmb.2409.09020","DOIUrl":"10.4014/jmb.2409.09020","url":null,"abstract":"<p><p>Neuroinflammation and microglial activation play critical roles in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Modulating microglial activation may help prevent the progression of these disorders. This study aimed to investigate the effects and mechanisms of <i>Melissa officinalis</i> ethanol extract on lipopolysaccharide (LPS)-induced microglial activation in BV2 cells. Cell viability and nitric oxide (NO) production were assessed using MTT assay and Griess reagent, while inflammatory cytokine levels were measured by qPCR. Key inflammatory pathways, including MAPK, TLR4, and antioxidant biomarkers, were analyzed through western blot and immunofluorescence. Rosmarinic acid content in <i>M. officinalis</i> was determined using high-performance liquid chromatography (HPLC). The results demonstrated that <i>M. officinalis</i> ethanol extract significantly inhibited LPS-induced NO production and reduced inflammatory cytokine expression. Additionally, it downregulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TLR4, NF-κB, and MAPK signaling pathways (p38, JNK, ERK), while increasing the expression of antioxidant markers, including Nrf2, HO-1, catalase, and SOD2. In conclusion, <i>M. officinalis</i> ethanol extract exerts neuroprotective effects by modulating inflammation and enhancing antioxidant defenses, suggesting its potential in the prevention and treatment of inflammation-related neurodegenerative diseases.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2474-2483"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Nitrate and Tryptone to Enhance Growth and Triacylglycerol Accumulation in Phaeodactylum tricornutum. 优化硝酸盐和胰蛋白胨以促进 Phaeodactylum tricornutum 的生长和三酰甘油的积累。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-09-30 DOI: 10.4014/jmb.2408.08036
Yufang Pan, Zhaowen Hu, Eric Maréchal, Hanhua Hu
{"title":"Optimizing Nitrate and Tryptone to Enhance Growth and Triacylglycerol Accumulation in <i>Phaeodactylum tricornutum</i>.","authors":"Yufang Pan, Zhaowen Hu, Eric Maréchal, Hanhua Hu","doi":"10.4014/jmb.2408.08036","DOIUrl":"10.4014/jmb.2408.08036","url":null,"abstract":"<p><p><i>Phaeodactylum tricornutum</i>, a unicellular diatom, is considered a potential feedstock for the production of biofuel and a promising producer for high-value products eicosapentaenoic acid and fucoxanthin. However, a high-efficient cultivating strategy to achieve commercial production of triacylglycerol (TAG) from the diatom is an urgent demand. In this study, we optimized the content and ratio of nitrate and tryptone in the medium to enhance biomass and TAG accumulation simultaneously. Growth with tryptone as the sole nitrogen gave rise to the lowest cell density but the highest TAG content in <i>P. tricornutum</i> relative to nitrate, nitrite, ammonium or urea cultures. In 500 μM NaNO<sub>3</sub> cultures, the growth of <i>P. tricornutum</i> increased with the increasing concentration (from 294 to 7056 μM nitrogen) of supplemented tryptone, however supplementation of high tryptone (≥882 μM nitrogen) decreased the neutral lipid content. Elevating nitrogen concentration from 294 to 882 μM via tryptone addition in 250 μM nitrate culture increased cell densities from day 6 to 10 and neutral lipid content on day 10. In particular, supplementing 588 μM nitrogen of tryptone in the 250 μM nitrate culture gave rise to the highest neutral lipid content on days 8 and 10 (increased by 109% and 62% relative to 500 μM nitrate-sole) with a comparable growth to that in 500 μM nitrate-sole culture from day 2 to 8. In conclusion, we optimized nitrate/tryptone ratio and found that a suitable tryptone addition to a relatively low nitrate culture was favourable to the biomass and TAG accumulation simultaneously in <i>P. tricornutum</i>.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2702-2710"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Characterization and Interaction between Human VEGF-D and VEGFR-3. 人血管内皮生长因子-D 和血管内皮生长因子受体-3 之间的分子特征和相互作用。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-11-20 DOI: 10.4014/jmb.2409.09060
Chae Eun Seo, Han Na Lee, Mi Suk Jeong, Se Bok Jang
{"title":"Molecular Characterization and Interaction between Human VEGF-D and VEGFR-3.","authors":"Chae Eun Seo, Han Na Lee, Mi Suk Jeong, Se Bok Jang","doi":"10.4014/jmb.2409.09060","DOIUrl":"10.4014/jmb.2409.09060","url":null,"abstract":"<p><p>Angiogenesis and lymphangiogenesis are some of the routes that cause metastasis. Vascular Endothelial Growth Factors (VEGFs) stimulate angiogenesis and lymphangiogenesis through VEGF receptors. Especially, VEGF-D and its receptor, VEGFR-3, play a pivotal role in regulating cellular processes such as survival, proliferation, and migration, thereby influencing lymphangiogenesis. The aim of this research is to clarify the molecular characteristics of VEGF-D and VEGFR-3 proteins and identify the key residues that are essential for the interaction between VEGF-D and VEGFR-3. Experiments, including size exclusion chromatography and GST pull-down assay analysis, reveal that specific residues, particularly D103 and Q110, are essential for VEGF-D/VEGFR-3 binding. Mutations in these residues induce structural alterations, resulting in reduced binding affinity and impaired activation of VEGFR-3. Moreover, this study suggests that a synthesized peptide, designed based on key residues of VEGF-D involved in binding to VEGFR-3, may act as a metastasis suppressor by competitively inhibiting the interaction between VEGF-D and VEGFR-3. Understanding these molecular interactions is expected to have significant potential to develop therapeutic peptides that can inhibit cancer cell-induced lymphangiogenesis and resolve metastasis via lymphangiogenesis across various cancer types.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2627-2636"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Characterization of RseC in the SoxR Reducing System and Its Role in Oxidative Stress Response in Escherichia coli.
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-12-28 Epub Date: 2024-11-25 DOI: 10.4014/jmb.2410.10007
Kang-Lok Lee, Joon-Hee Lee, Yun-Hee Kim, Jung-Hye Roe
{"title":"Functional Characterization of RseC in the SoxR Reducing System and Its Role in Oxidative Stress Response in <i>Escherichia coli</i>.","authors":"Kang-Lok Lee, Joon-Hee Lee, Yun-Hee Kim, Jung-Hye Roe","doi":"10.4014/jmb.2410.10007","DOIUrl":"10.4014/jmb.2410.10007","url":null,"abstract":"<p><p>The reducing system of SoxR consists of a putative electron transfer system encoded by the <i>rsxABCDGE</i> operon, RseC encoded from the unlinked <i>rpoE-rseABC</i> operon, and ApbE. RseC is composed of two transmembrane helices, with both the N-terminal and C-terminal domains located in the cytoplasm. The N-terminal domain has a four-cysteine motif, CX<sub>5</sub>CX<sub>2</sub>CX<sub>5</sub>C, in the cytoplasm, with the latter three cysteines highly conserved in RseC homologs, allowing the SoxR reducer complex to function in <i>Escherichia coli</i>. These three cysteines can form an oxygen-sensitive Fe-S cluster when only the N-terminal domain is expressed in a truncated form. Without the C-terminal domain, RseC shows no significant difference in interaction with the SoxR reducer complex, but its ability to complement the function of an <i>rseC</i> mutant is greatly reduced. Additionally, the <i>rseC</i> mutant exhibits weak resistance to cumene hydrogen peroxide in the stationary phase and increased sensitivity to hydrogen peroxide in the exponential phase, independent of the SoxR regulon. This suggests that the full-length sequence of RseC is essential for its function and that it may have SoxR-independent additional roles.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2547-2554"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信