Characterization and Evaluation of Lactobacillus plantarum LC5.2 Isolated from Thai Native Pigs for its Probiotic Potential in Gut Microbiota Modulation and Immune Enhancement.
IF 3.1 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Characterization and Evaluation of <i>Lactobacillus plantarum</i> LC5.2 Isolated from Thai Native Pigs for its Probiotic Potential in Gut Microbiota Modulation and Immune Enhancement.","authors":"Kittiya Khongkool, Malai Taweechotipatr, Sunchai Payungporn, Vorthon Sawaswong, Monthon Lertworapreecha","doi":"10.4014/jmb.2503.03028","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotic supplementation, particularly with <i>Lactobacillus</i> species, enhances growth performance, maintains gastrointestinal microbial balance, and prevents infections in livestock. This study isolated <i>Lactobacillus</i> strains from the feces of healthy native pigs in southern Thailand and assessed their probiotic properties and safety through both <i>in vitro</i> and <i>in vivo</i> evaluations. Nine <i>Lactobacillus</i> strains showed probiotic potential, with <i>Lactobacillus plantarum</i> LC5.2 demonstrating the best characteristics. This strain tolerated both acid and bile (100% tolerance) and exhibited strong adhesion properties, including high auto-aggregation (69.74%), cell surface hydrophobicity (77.14%), adhesion to Caco-2 cells (9.31%), and biofilm formation. It also exhibited antibacterial activity, inhibiting EHEC, EPEC, and <i>Salmonella</i> Typhimurium through organic acid production. Co-aggregation with these pathogens ranged from 60.83% to 74.09%. Safety evaluations showed no hemolytic activity, susceptibility to antibiotics, and co-existence with other probiotics. In mice, <i>L. plantarum</i> LC5.2 showed no toxicity, with normal food intake, behavior, and weight gain. No abnormalities were found in the small intestine, colon, liver, or spleen. Mice administered the probiotic had significantly higher intestinal IgA levels. Gut microbiome analysis revealed no notable structural alterations but indicated an increase in beneficial bacteria, including <i>Lactobacillus</i>. These results suggest that <i>L. plantarum</i> LC5.2 demonstrates strong probiotic potential, safety, and benefits for gut health, making it a promising candidate for livestock applications.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2503028"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2503.03028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Probiotic supplementation, particularly with Lactobacillus species, enhances growth performance, maintains gastrointestinal microbial balance, and prevents infections in livestock. This study isolated Lactobacillus strains from the feces of healthy native pigs in southern Thailand and assessed their probiotic properties and safety through both in vitro and in vivo evaluations. Nine Lactobacillus strains showed probiotic potential, with Lactobacillus plantarum LC5.2 demonstrating the best characteristics. This strain tolerated both acid and bile (100% tolerance) and exhibited strong adhesion properties, including high auto-aggregation (69.74%), cell surface hydrophobicity (77.14%), adhesion to Caco-2 cells (9.31%), and biofilm formation. It also exhibited antibacterial activity, inhibiting EHEC, EPEC, and Salmonella Typhimurium through organic acid production. Co-aggregation with these pathogens ranged from 60.83% to 74.09%. Safety evaluations showed no hemolytic activity, susceptibility to antibiotics, and co-existence with other probiotics. In mice, L. plantarum LC5.2 showed no toxicity, with normal food intake, behavior, and weight gain. No abnormalities were found in the small intestine, colon, liver, or spleen. Mice administered the probiotic had significantly higher intestinal IgA levels. Gut microbiome analysis revealed no notable structural alterations but indicated an increase in beneficial bacteria, including Lactobacillus. These results suggest that L. plantarum LC5.2 demonstrates strong probiotic potential, safety, and benefits for gut health, making it a promising candidate for livestock applications.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.