Journal of microbiology and biotechnology最新文献

筛选
英文 中文
Study on Optimization of Liquid Fermentation Medium and Antitumor Activity of the Mycelium on Phyllopora lonicerae. 液体发酵培养基的优化及菌丝体对忍冬疫霉的抗肿瘤活性研究
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-24 DOI: 10.4014/jmb.2405.05004
Min Liu, Lu Liu, Guoli Zhang, Guangyuan Wang, Ranran Hou, Yinghao Zhang, Xuemei Tian
{"title":"Study on Optimization of Liquid Fermentation Medium and Antitumor Activity of the Mycelium on <i>Phyllopora lonicerae</i>.","authors":"Min Liu, Lu Liu, Guoli Zhang, Guangyuan Wang, Ranran Hou, Yinghao Zhang, Xuemei Tian","doi":"10.4014/jmb.2405.05004","DOIUrl":"10.4014/jmb.2405.05004","url":null,"abstract":"<p><p><i>Phylloporia lonicerae</i> is an annual fungus that specifically parasitizes living <i>Lonicera</i> plants, offering significant potential for developing new resource food and medicine. However, wild resources and mycelium production of this fungus is limited, and its anti-tumor active ingredients and mechanisms remain unclear, hampering the development of this fungus. Thus, we optimized the fermentation medium of <i>P. lonicerae</i> and studied the anti-tumor activity of its mycelium. The results indicated that the optimum fermentation medium consisted of 2% sucrose, 0.2% peptone, 0.1% KH<sub>2</sub>PO<sub>4</sub>, 0.05% MgSO<sub>4</sub>·7H<sub>2</sub>O, 0.16% <i>Lonicera japonica</i> petals, 0.18% P fungal elicitor, and 0.21% <i>L. japonica</i> stem. The biomass reached 7.82 ± 0.41 g/l after 15 days of cultivation in the optimized medium, a 142% increase compared with the potato dextrose broth medium, with a 64% reduction in cultivation time. The intracellular alcohol extract had a higher inhibitory effect on A549 and Eca-109 cells than the intracellular water extract, with half-maximal inhibitory concentration values of 2.42 and 2.92 mg/ml, respectively. Graded extraction of the alcohol extract yielded petroleum ether phase, chloroform phase, ethyl acetate phase, and n-butanol phase. Among them, the petroleum ether phase exhibited a better effect than the positive control, with a half-maximal inhibitory concentration of 113.3 μg/ml. Flow cytometry analysis indicated that petroleum ether components could induce apoptosis of Eca-109 cells, suggesting that this extracted component can be utilized as an anticancer agent in functional foods. This study offers valuable technical support and a theoretical foundation for promoting the comprehensive development and efficient utilization of <i>P. lonicerae</i>.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1898-1911"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of Recombinant Human Papillomavirus 16 L1 Protein for Incorporation with para-Azido-L-Phenylalanine. 重组人乳头瘤病毒 16 L1 蛋白与对位叠氮-L-苯丙氨酸的结合工程。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-08-09 DOI: 10.4014/jmb.2407.07033
Jinhyeon Kim, Ki Jun Jeong, Geun-Joong Kim, Jong-Il Choi
{"title":"Engineering of Recombinant Human Papillomavirus 16 L1 Protein for Incorporation with <i>para</i>-Azido-<i>L</i>-Phenylalanine.","authors":"Jinhyeon Kim, Ki Jun Jeong, Geun-Joong Kim, Jong-Il Choi","doi":"10.4014/jmb.2407.07033","DOIUrl":"10.4014/jmb.2407.07033","url":null,"abstract":"<p><p>Human papillomavirus (HPV) L1 capsid protein were produced in several host systems, but few studies have focused on enhancing the properties of the L1 protein. In this study, we aimed to produce recombinant Human papillomavirus (HPV) L1 capsid protein containing <i>para</i>-azido-<i>L</i>-phenylalanine (pAzF) in <i>Escherichia coli</i>. First, we expressed the maltose-binding protein (MBP)-fused HPV16 L1, and 5 residues in HPV16 L1 protein were selected by the in silico modeling for amber codon substitution. Among the variants of the five locations, we identified a candidate that exhibited significant differences in expression with and without pAzF via genetic code expansion (GCE). The expressed recombinant MBP-HPV16L1 protein was confirmed for incorporation of pAzF and the formation of VLPs was tested in vitro.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1926-1932"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kraft Lignin Decomposition by Forest Soil Bacterium Pseudomonas kribbensis CHA-19. 森林土壤假单胞菌 CHA-19 分解牛皮纸木质素。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-19 DOI: 10.4014/jmb.2406.06021
Dockyu Kim, Han-Woo Kim, Hyoungseok Lee
{"title":"Kraft Lignin Decomposition by Forest Soil Bacterium <i>Pseudomonas kribbensis</i> CHA-19.","authors":"Dockyu Kim, Han-Woo Kim, Hyoungseok Lee","doi":"10.4014/jmb.2406.06021","DOIUrl":"10.4014/jmb.2406.06021","url":null,"abstract":"<p><p>Identification of the biochemical metabolic pathway for lignin decomposition and the responsible degradative enzymes is needed for the effective biotechnological valorization of lignin to renewable chemical products. In this study, we investigated the decomposition of kraft lignin by the soil bacterium <i>Pseudomonas kribbensis</i> CHA-19, a strain that can utilize kraft lignin and its main degradation metabolite, vanillic acid, as growth substrates. Gel permeation chromatography revealed that CHA-19 decomposed polymeric lignin and degraded dehydrodivanillin (a representative lignin model compound); however, the degradative enzyme(s) and mechanism were not identified. Quantitative polymerase chain reaction with mRNAs from CHA-19 cells induced in the presence of lignin showed that the putative genes coding for two laccase-like multicopper oxidases (LMCOs) and three dye-decolorizing peroxidases (DyPs) were upregulated by 2.0- to 7.9-fold compared with glucose-induced cells, which indicates possible cooperation with multiple enzymes for lignin decomposition. Computational homology analysis of the protein sequences of LMCOs and DyPs also predicted their roles in lignin decomposition. Based on the above data, CHA-19 appears to initiate oxidative lignin decomposition using multifunctional LMCOs and DyPs, producing smaller metabolites such as vanillic acid, which is further degraded via <i>ortho</i>- and <i>meta</i>-ring cleavage pathways. This study not only helps to better understand the role of bacteria in lignin decomposition and thus in terrestrial ecosystems, but also expands the biocatalytic toolbox with new bacterial cells and their degradative enzymes for lignin valorization.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1867-1875"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Characterization of an R-M System in Paracoccus denitrifican DYTN-1 to Improve the Plasmid Conjugation Transfer Efficiency. 鉴定和表征反硝化细菌 DYTN-1 中的 R-M 系统以提高质粒共轭转移效率
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-26 DOI: 10.4014/jmb.2402.02041
Yunpeng Shi, Wenyan Cao, Zhiping Zheng, Sha Xu, Lijuan Chai, Shenghu Zhou, Yu Deng
{"title":"Identification and Characterization of an R-M System in <i>Paracoccus denitrifican</i> DYTN-1 to Improve the Plasmid Conjugation Transfer Efficiency.","authors":"Yunpeng Shi, Wenyan Cao, Zhiping Zheng, Sha Xu, Lijuan Chai, Shenghu Zhou, Yu Deng","doi":"10.4014/jmb.2402.02041","DOIUrl":"10.4014/jmb.2402.02041","url":null,"abstract":"<p><p><i>Paracoccus denitrificans</i> has been identified as a representative strain with heterotrophic nitrification-aerobic denitrification capabilities (HN-AD), and demonstrates strong denitrification proficiency. Previously, we isolated the DYTN-1 strain from activated sludge, and it has showcased remarkable nitrogen removal abilities and genetic editability, which positions <i>P. denitrificans</i> DYTN-1 as a promising chassis cell for synthetic biology engineering, with versatile pollutant degradation capabilities. However, the strain's low stability in plasmid conjugation transfer efficiency (PCTE) hampers gene editing efficacy, and is attributed to its restriction modification system (R-M system). To overcome this limitation, we characterized the R-M system in <i>P. denitrificans</i> DYTN-1 and identified a DNA endonuclease and 13 DNA methylases, with the DNA endonuclease identified as HNH endonuclease. Subsequently, we developed a plasmid artificial modification approach to enhance conjugation transfer efficiency, which resulted in a remarkable 44-fold improvement in single colony production. This was accompanied by an increase in the frequency of positive colonies from 33.3% to 100%. Simultaneously, we cloned, expressed, and characterized the speculative HNH endonuclease capable of degrading unmethylated DNA at 30°C without specific cutting site preference. Notably, the impact of DNA methylase M9 modification on the plasmid was discovered, significantly impeding the cutting efficiency of the HNH endonuclease. This revelation unveils a novel R-M system in <i>P. denitrificans</i> and sheds light on protective mechanisms employed against exogenous DNA invasion. These findings pave the way for future engineering endeavors aimed at enhancing the DNA editability of <i>P. denitrificans</i>.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1826-1835"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Gut Microbial Lipid Metabolite 14(15)-EpETE Inhibits Substance P Release by Targeting GCG/PKA Signaling to Relieve Cisplatin-Induced Nausea and Vomiting in Rats. 肠道微生物脂质代谢物 14(15)- EpETE 通过靶向 GCG/PKA 信号抑制物质 P 的释放,从而缓解大鼠由顺铂引起的恶心和呕吐。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-15 DOI: 10.4014/jmb.2403.03044
Man Lu, Liwei Xie, Sijie Yin, Jing Zhou, Lingmei Yi, Ling Ye
{"title":"The Gut Microbial Lipid Metabolite 14(15)-EpETE Inhibits Substance P Release by Targeting GCG/PKA Signaling to Relieve Cisplatin-Induced Nausea and Vomiting in Rats.","authors":"Man Lu, Liwei Xie, Sijie Yin, Jing Zhou, Lingmei Yi, Ling Ye","doi":"10.4014/jmb.2403.03044","DOIUrl":"10.4014/jmb.2403.03044","url":null,"abstract":"<p><p>Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect related to activation of substance P (SP). SP activation can result from dysregulation of the gut-brain axis, and also from activation of protein kinase A signaling (PKA) signaling. In this study, we connected these factors in an attempt to unveil the mechanisms underlying CINV and develop new therapeutic strategies. Female rats were injected with cisplatin (Cis) to induce pica. Fecal samples were collected before/after injection, and subjected to lipid metabolomics analysis. In another portion of pica rats, the PKA inhibitor KT5720 was applied to investigate the involvement of PKA signaling in CINV, while fecal microbiota transplantation (FMT) was implemented to verify the therapeutic effect of the lipid metabolite 14(15)-EpETE. Pica symptoms were recorded, followed by ileal histological examination. The targeting relationship between 14(15)-EpETE and glucagon was determined by bioinformatics. SP and glucagon/PKA signaling in rat ileum, serum, and/or brain substantia nigra were detected by immunohistochemistry, enzyme-linked immunosorbent assay, and/or western blot. The results showed a significantly lower level of 14(15)-EpETE in rat feces after Cis injection. KT5720 treatment alleviated Cis-induced pica symptoms, ileal injury, SP content increase in the ileum, serum, and brain substantia nigra, and ileal PKA activation in rats. The ileal level of glucagon was elevated by Cis in rats. FMT exerted an effect similar to that of KT5720 treatment, relieving the Cis-induced changes, including ileal glucagon/PKA activation in rats. Our findings demonstrate that FMT restores 14(15)-EpETE production, which inhibits SP release by targeting GCG/PKA signaling, ultimately mitigating CINV.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1769-1777"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the Effect of Microbial Consortia Fermentation on the Quality of HnB by Untargeted Metabolomics. 通过非靶向代谢组学分析微生物联合发酵对 HnB 质量的影响
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-30 DOI: 10.4014/jmb.2402.02039
Ling Zou, Hong Zhang, Zhonghua Liu, Jianfeng Sun, Yang Hu, Yishu Ding, Xinwei Ji, Zhenfei Yang, Qi Zhang, Binbin Hu
{"title":"Analyzing the Effect of Microbial Consortia Fermentation on the Quality of HnB by Untargeted Metabolomics.","authors":"Ling Zou, Hong Zhang, Zhonghua Liu, Jianfeng Sun, Yang Hu, Yishu Ding, Xinwei Ji, Zhenfei Yang, Qi Zhang, Binbin Hu","doi":"10.4014/jmb.2402.02039","DOIUrl":"10.4014/jmb.2402.02039","url":null,"abstract":"<p><p>Fermentation has been identified as an effective strategy to alter the chemical makeup of tobacco, thereby enhancing its quality. The deliberate introduction of microorganisms can hasten the fermentation process. In this research, microbial consortia harvested from the tobacco surface were utilized to enhance the tobacco quality. This enhancement also elevated several sensory attributes of HnB cigarettes, such as aroma richness, moisture, strength, and reduced irritation, achieving a sensory quality rating of 84.5. This marks a notable improvement compared to the 82 rating of the original, unfermented cigarettes. Untargeted metabolomics analysis revealed a decrease in total polyphenols and unsaturated fatty acids, while the levels of polyacids, alcohols, ketones, furans, and other compounds increased in the fermented tobacco. Additionally, KEGG pathway enrichment analysis indicated that the enhancement in tobacco quality through microbial consortia fermentation is linked to various biological pathways, with pathways related to fatty acid and amino acid degradation playing pivotal roles. The findings of this study will serve as a reference for the commercial production of HnB cigarettes, and the elucidated mechanism offers a theoretical basis for exploring microbial fermentation as a means to improve tobacco quality.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1890-1897"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in Pseudomonas aeruginosa RW9 for Potential Bioremediation. 铜绿假单胞菌 RW9 中六价铬诱导的鼠李糖脂生产和基因表达的新见解,以实现潜在的生物修复。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-19 DOI: 10.4014/jmb.2406.06034
Fatini Mat Arisah, Norhayati Ramli, Hidayah Ariffin, Toshinari Maeda, Mohammed Abdillah Ahmad Farid, Mohd Zulkhairi Mohd Yusoff
{"title":"Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in <i>Pseudomonas aeruginosa</i> RW9 for Potential Bioremediation.","authors":"Fatini Mat Arisah, Norhayati Ramli, Hidayah Ariffin, Toshinari Maeda, Mohammed Abdillah Ahmad Farid, Mohd Zulkhairi Mohd Yusoff","doi":"10.4014/jmb.2406.06034","DOIUrl":"10.4014/jmb.2406.06034","url":null,"abstract":"<p><p>Rhamnolipid (RL) is renowned for its efficacy in bioremediating several types of organic and metal contaminants. Nevertheless, there has been a scarcity of studies specifically examining the relationship between this substance and metals, especially in terms of their impact on RL formation and the underlying interaction processes. This study addresses this gap by investigating the RL mechanism in Cr (VI) remediation and evaluating its effect on RL production in <i>Pseudomonas aeruginosa</i> RW9. In this study, <i>P. aeruginosa</i> RW9 was grown in the presence of 10 mg l<sup>-1</sup> Cr (VI). We monitored RL yield, congeners distribution, and their ratios, as well as the transcriptional expression of the RL-encoded genes: <i>rhlA</i>, <i>rhlB</i>, and <i>rhlC</i>. Our results revealed that RL effectively reduced Cr (VI) to Cr (III), with RL yield increasing threefold, although with a slight delay in synthesis compared to control cells. Furthermore, Cr (VI) exposure induced the transcriptional expression of the targeted genes, leading to a significant increase in di-RL production. The findings confirm that Cr (VI) significantly impacts RL production, altering its structural compositions and enhancing the transcriptional expression of RL-encoded genes in <i>P. aeruginosa</i> RW9. This study represents a novel exploration of Cr (VI)'s influence on RL production, providing valuable insights into the biochemical pathways involved and supporting the potential of RL in Cr (VI) bioremediation.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1877-1889"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ICP5249 Promotes Hair Growth by Activating the AMPK-Autophagy Signaling Pathway. ICP5249通过激活AMPK-自噬信号通路促进毛发生长
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-26 DOI: 10.4014/jmb.2406.06015
Jung Ok Lee, Yu-Jin Kim, You Na Jang, Jung Min Lee, Kayoung Shin, Sekyoo Jeong, Hwa-Jee Chung, Beom Joon Kim
{"title":"ICP5249 Promotes Hair Growth by Activating the AMPK-Autophagy Signaling Pathway.","authors":"Jung Ok Lee, Yu-Jin Kim, You Na Jang, Jung Min Lee, Kayoung Shin, Sekyoo Jeong, Hwa-Jee Chung, Beom Joon Kim","doi":"10.4014/jmb.2406.06015","DOIUrl":"10.4014/jmb.2406.06015","url":null,"abstract":"","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1810-1818"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in the Antivirulence Effects of Fatty Acids and Virstatin against Vibrio cholerae Strains. 脂肪酸和Virstatin对霍乱弧菌株的抗病毒作用的变化
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-19 DOI: 10.4014/jmb.2405.05002
Donghyun Lee, Jayun Joo, Hunseok Choi, Seonghyeon Son, Jonghyun Bae, Dong Wook Kim, Eun Jin Kim
{"title":"Variations in the Antivirulence Effects of Fatty Acids and Virstatin against <i>Vibrio cholerae</i> Strains.","authors":"Donghyun Lee, Jayun Joo, Hunseok Choi, Seonghyeon Son, Jonghyun Bae, Dong Wook Kim, Eun Jin Kim","doi":"10.4014/jmb.2405.05002","DOIUrl":"10.4014/jmb.2405.05002","url":null,"abstract":"<p><p>The expression of two major virulence factors of <i>Vibrio cholerae</i>, cholera toxin (CT) and toxin co-regulated pilus (TCP), is induced by environmental stimuli through a cascade of interactions among regulatory proteins known as the ToxR regulon when the bacteria reach the human small intestine. ToxT is produced via the ToxR regulon and acts as the direct transcriptional activator of CT (<i>ctxAB</i>), TCP (<i>tcp</i> gene cluster), and other virulence genes. Unsaturated fatty acids (UFAs) and several small-molecule inhibitors of ToxT have been developed as antivirulence agents against <i>V. cholerae</i>. This study reports the inhibitory effects of fatty acids and virstatin (a small-molecule inhibitor of ToxT) on the transcriptional activation functions of ToxT in isogenic derivatives of <i>V. cholerae</i> strains containing various <i>toxT</i> alleles. The fatty acids and virstatin had discrete effects depending on the ToxT allele (different by 2 amino acids), <i>V. cholerae</i> strain, and culture conditions, indicating that <i>V. cholerae</i> strains could overcome the effects of UFAs and small-molecule inhibitors by acquiring point mutations in <i>toxT</i>. Our results suggest that small-molecule inhibitors should be examined thoroughly against various <i>V. cholerae</i> strains and <i>toxT</i> alleles during development.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1757-1768"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitive and Enzyme-Free Pseudomonas aeruginosa Detection and Isolation via DNAzyme Cascade Triggered DNA Tweezer. 通过 DNA 酶级联触发 DNA 镊子灵敏、无酶地检测和分离铜绿假单胞菌。
IF 2.5 4区 生物学
Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-08-09 DOI: 10.4014/jmb.2407.07006
Furong Liu, Jingyuan Xu, Lihua Yang
{"title":"Sensitive and Enzyme-Free <i>Pseudomonas aeruginosa</i> Detection and Isolation via DNAzyme Cascade Triggered DNA Tweezer.","authors":"Furong Liu, Jingyuan Xu, Lihua Yang","doi":"10.4014/jmb.2407.07006","DOIUrl":"10.4014/jmb.2407.07006","url":null,"abstract":"<p><p>Effective isolation and sensitive detection of <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) is crucial for the early diagnosis and prognosis of various diseases, such as urinary tract infections. However, efficient isolation and simultaneous detection of <i>P. aeruginosa</i> remains a huge challenge. Herein, we depict a novel fluorescence assay for sensitive, enzyme-free detection of <i>P. aeruginosa</i> by integrating DNAzyme cascade-induced DNA tweezers and magnetic nanoparticles (MNPs)-based separation. The capture probe@MNPs is capable of accurately identifying target bacteria and transporting the bacteria signal to nucleic acid signals. Based on the DNAzyme cascade-induced DNA tweezers, the nucleic acid signals are extensively amplified, endowing the method with a high sensitivity and a low detection limit of 1 cfu/mL. In addition, the method also exhibits a wide detection of six orders of magnitudes. The proposed method could be extended to other bacteria detection by simply changing the aptamer sequence. Taking the merit of the high sensitivity, greatly minimized detection time (less than 1.5 h), enzyme-free characteristics, and stability, the proposed method could be potentially applied to diagnosing and preventing diseases caused by pathogenic bacteria.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1919-1925"},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信