Journal of Nanobiotechnology最新文献

筛选
英文 中文
Correction: Mechanism of cold exposure delaying wound healing in mice.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-12-12 DOI: 10.1186/s12951-024-03039-6
Fu-Xing-Zi Li, Jun-Jie Liu, Li-Min Lei, Ye-Hui Li, Feng Xu, Xiao Lin, Rong-Rong Cui, Ming-Hui Zheng, Bei Guo, Su-Kang Shan, Ke-Xin Tang, Chang-Chun Li, Yun-Yun Wu, Jia-Yue Duan, Ye-Chi Cao, Yan-Lin Wu, Si-Yang He, Xi Chen, Feng Wu, Ling-Qing Yuan
{"title":"Correction: Mechanism of cold exposure delaying wound healing in mice.","authors":"Fu-Xing-Zi Li, Jun-Jie Liu, Li-Min Lei, Ye-Hui Li, Feng Xu, Xiao Lin, Rong-Rong Cui, Ming-Hui Zheng, Bei Guo, Su-Kang Shan, Ke-Xin Tang, Chang-Chun Li, Yun-Yun Wu, Jia-Yue Duan, Ye-Chi Cao, Yan-Lin Wu, Si-Yang He, Xi Chen, Feng Wu, Ling-Qing Yuan","doi":"10.1186/s12951-024-03039-6","DOIUrl":"10.1186/s12951-024-03039-6","url":null,"abstract":"","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"752"},"PeriodicalIF":10.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A minimalist multifunctional nano-prodrug for drug resistance reverse and integration with PD-L1 mAb for enhanced immunotherapy of hepatocellular carcinoma.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-12-03 DOI: 10.1186/s12951-024-03027-w
Ting Zou, Yun Huang, Zongtao Zhou, Shuangyan He, Jia Liu, Yalan Chen, Hongdu Liu, Zhonghui Luo, Miaoxin Liu, Hua Wei, CuiYun Yu
{"title":"A minimalist multifunctional nano-prodrug for drug resistance reverse and integration with PD-L1 mAb for enhanced immunotherapy of hepatocellular carcinoma.","authors":"Ting Zou, Yun Huang, Zongtao Zhou, Shuangyan He, Jia Liu, Yalan Chen, Hongdu Liu, Zhonghui Luo, Miaoxin Liu, Hua Wei, CuiYun Yu","doi":"10.1186/s12951-024-03027-w","DOIUrl":"10.1186/s12951-024-03027-w","url":null,"abstract":"<p><p>Clinical treatment of hepatocellular carcinoma (HCC) with 5-fluorouracil (5-FU), the primary anticancer agent, remains unsatisfactory due to the glutathione (GSH)-associated drug resistance and immunosuppressive microenvironment of HCC. To develop a facile yet robust strategy to overcome 5-FU resistance for enhanced immunotherapy treatment of HCC via all dimensional GSH exhaustion, we report in this study construction of a minimalist prodrug consisting of 5-FU linked to an indoleamine-(2,3)-dioxygenase (IDO) inhibitor (IND) via a disulfide bridge, FU-SS-IND that can further self-assemble into stabilized nanoparticles, FU-SS-IND NPs. Specifically, besides the disulfide linker-induced GSH exhaustion, IND inhibits GSH biosynthesis and enhances the effector function of T cells for turning a \"cold\" tumor to a \"hot\" one, which synergistically achieving a tumor inhibition rate (TIR) of 92.5% in a 5-FU resistant mice model. Most importantly, FU-SS-IND NPs could upregulate programmed death ligand 1 (PD-L1) expression on the surface of tumor cells, which enables facile combination with immune checkpoint blockade (ICB) for a ultimate prolonged survival lifetime of 5-FU-resistant tumors-bearing mice. Overall, the minimalist bioreducible nano-prodrug developed herein demonstrates great translatable potential for efficiently reversing drug resistance and enhancing immunotherapy of HCC.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"750"},"PeriodicalIF":10.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel cocktail therapy based on multifunctional supramolecular hydrogel targeting immune-angiogenesis-nerve network for enhanced diabetic wound healing.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-12-03 DOI: 10.1186/s12951-024-03038-7
Ruiyin Zeng, Yuan Xiong, Ze Lin, Xiangyu Chu, Bin Lv, Li Lu, Chuanlu Lin, Jiewen Liao, Lizhi Ouyang, Yun Sun, Guandong Dai, Faqi Cao, Guohui Liu
{"title":"Novel cocktail therapy based on multifunctional supramolecular hydrogel targeting immune-angiogenesis-nerve network for enhanced diabetic wound healing.","authors":"Ruiyin Zeng, Yuan Xiong, Ze Lin, Xiangyu Chu, Bin Lv, Li Lu, Chuanlu Lin, Jiewen Liao, Lizhi Ouyang, Yun Sun, Guandong Dai, Faqi Cao, Guohui Liu","doi":"10.1186/s12951-024-03038-7","DOIUrl":"10.1186/s12951-024-03038-7","url":null,"abstract":"<p><p>Diabetes-associated chronic skin wounds present a formidable challenge due to inadequate angiogenesis and nerve regeneration during the healing process. In the present study, we introduce a groundbreaking approach in the form of a novel cocktail therapy utilizing a multifunctional supramolecular hydrogel. Formulated through the photo-crosslinking of gelatinized aromatic residues and β-cyclodextrin (β-CD), this injectable hydrogel fosters weak host-guest interactions, offering a promising solution. The therapeutic efficacy of the hydrogel is realized through its integration with adipose-derived stem cells (ADSCs) and lipid nanoparticles encapsulating ginsenoside RG1 and Stromal cell-derived factor-1 (SDF-1). This strategic combination directs ADSCs to the injury site, guiding them toward neurogenic specialization while establishing an advantageous immunomodulatory environment through macrophage reprogramming. The synergistic effects of the newly differentiated nerve cells and the regenerative cytokines secreted by ADSCs contribute significantly to enhanced angiogenesis, ultimately expediting the diabetic wound healing process. To summarize, this innovative hydrogel-based therapeutic system represents a novel perspective for the management of diabetic wounds by concurrently targeting immune response, angiogenesis, and nerve regeneration-a pivotal advancement in the quest for effective solutions in diabetic wound care.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"749"},"PeriodicalIF":10.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A supervised machine learning tool to predict the bactericidal efficiency of nanostructured surface.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-12-03 DOI: 10.1186/s12951-024-02974-8
Yaxi Chen, Hongyi Chen, Anthony Harker, Yuanchang Liu, Jie Huang
{"title":"A supervised machine learning tool to predict the bactericidal efficiency of nanostructured surface.","authors":"Yaxi Chen, Hongyi Chen, Anthony Harker, Yuanchang Liu, Jie Huang","doi":"10.1186/s12951-024-02974-8","DOIUrl":"10.1186/s12951-024-02974-8","url":null,"abstract":"<p><p>The emergence and rapid spread of multidrug-resistant bacterial strains is a growing concern of public health. Inspired by the natural bactericidal surfaces of lotus leaves and shark skin, increasing attention has been focused on the use of mechano-bactericidal methods to create surfaces with antibacterial and/or bactericidal effects. There have been several studies exploring the bactericidal effect of nanostructured surfaces under various combinations of parameters. However, the correlation and synergies between these factors still need to be clarified. Recently machine learning (ML), which enables prediction or decision-making based on data, has been used in the field of biomaterials with promising results. In this study, we explored ML in nanotechnology to investigate the antimicrobial potential of nanostructured surfaces. A dataset of nanostructured surfaces and their antimicrobial properties was built by extracting the published literature. Based on the literature review and the distribution of our dataset, 70% bactericidal efficiency was selected as a practical benchmark for our classification model that balances stringent bactericidal performance with achievable targets in diverse conditions. Subsequently, we developed an ML classification model, which demonstrated an 81% accuracy in its predictive capability. A regression model was further developed to predict the value of bactericidal efficiency for nanostructured surfaces. Feature importance analysis of the ML models suggested that nanotopographical features have a greater influence on bactericidal properties than material properties, thus providing insight into the principles of the mechano-bactericidal effect of nanostructured surfaces. Overall, this ML model tool could help researchers to effectively select and design the parameters of the surface structure prior to experimentation, thereby improving the timeliness and reducing the number of experiments and the associated costs.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"748"},"PeriodicalIF":10.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering extracellular vesicles to transiently permeabilize the blood-brain barrier.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-12-02 DOI: 10.1186/s12951-024-03019-w
Francesca Tomatis, Susana Rosa, Susana Simões, Marta Barão, Carlos Jesus, João Novo, Emanuel Barth, Manja Marz, Lino Ferreira
{"title":"Engineering extracellular vesicles to transiently permeabilize the blood-brain barrier.","authors":"Francesca Tomatis, Susana Rosa, Susana Simões, Marta Barão, Carlos Jesus, João Novo, Emanuel Barth, Manja Marz, Lino Ferreira","doi":"10.1186/s12951-024-03019-w","DOIUrl":"10.1186/s12951-024-03019-w","url":null,"abstract":"<p><strong>Background: </strong>Drug delivery to the brain is challenging due to the restrict permeability of the blood brain barrier (BBB). Recent studies indicate that BBB permeability increases over time during physiological aging likely due to factors (including extracellular vesicles (EVs)) that exist in the bloodstream. Therefore, inspiration can be taken from aging to develop new strategies for the transient opening of the BBB for drug delivery to the brain.</p><p><strong>Results: </strong>Here, we evaluated the impact of small EVs (sEVs) enriched with microRNAs (miRNAs) overexpressed during aging, with the capacity to interfere transiently with the BBB. Initially, we investigated whether the miRNAs were overexpressed in sEVs collected from plasma of aged individuals. Next, we evaluated the opening properties of the miRNA-enriched sEVs in a static or dynamic (under flow) human in vitro BBB model. Our results showed that miR-383-3p-enriched sEVs significantly increased BBB permeability in a reversible manner by decreasing the expression of claudin 5, an important tight junction protein of brain endothelial cells (BECs) of the BBB, mediated in part by the knockdown of activating transcription factor 4 (ATF4).</p><p><strong>Conclusions: </strong>Our findings suggest that engineered sEVs have potential as a strategy for the temporary BBB opening, making it easier for drugs to reach the brain when injected into the bloodstream.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"747"},"PeriodicalIF":10.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A green, versatile, and facile strategy for anti-biofouling surface with ultra-high graft density polyethylene glycol.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-12-02 DOI: 10.1186/s12951-024-03026-x
Wenjie Liu, Suqin He, Hao Liu, Zeyu Shou, Kaiyuan Huo, Hongping Xiang, Aihan Feng, Wei Lu, Na Li
{"title":"A green, versatile, and facile strategy for anti-biofouling surface with ultra-high graft density polyethylene glycol.","authors":"Wenjie Liu, Suqin He, Hao Liu, Zeyu Shou, Kaiyuan Huo, Hongping Xiang, Aihan Feng, Wei Lu, Na Li","doi":"10.1186/s12951-024-03026-x","DOIUrl":"https://doi.org/10.1186/s12951-024-03026-x","url":null,"abstract":"<p><p>Implantable catheters are susceptible to severe complications due to non-specific protein adhesion on their surfaces. Polyethylene glycol (PEG) coatings, the gold standard for resistance to non-specific protein adhesion, present a challenge in achieving high-density grafting, which significantly restricts their use as anti-biofouling coatings. Herein, we exploited the strong interaction between polyphenols (PCs) and polycations (K6-PEG) to graft PEG onto the surface of PC-Cu (A network of metal polyphenols composed of proanthocyanidins and metal copper ions, with expectation for the coating with excellent resistance to non-specific protein adhesion (PC-Cu@K6-PEG). The introduction of K6-PEG resulted in enhanced stability and modulus of PC-Cu, as well as a reduction in the surface adhesion energy and contact angle of PC-Cu. In contrast to previously reported PEG coatings, PC-Cu@K6-PEG exhibited a markedly elevated grafting density of PEG (4.06 chains/nm²), which was more than double the highest value previously reported (1.9 chains/nm²), due to the diffusing ability of K6-PEG throughout the PC-Cu networks. PC-Cu@K6-PEG displays robust resistance to a variety of proteins, microbials, and platelet attachment, thereby preventing thrombosis. The coating ability of PC-Cu onto diverse substrates, combined with the simple, straightforward and environmentally benign process of fabricating PC-Cu@K6-PEG, suggests that this strategy has significant potential for use in anti-biofouling surfaces.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"746"},"PeriodicalIF":10.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced siRNA delivery in combating hepatitis B virus: mechanistic insights and recent updates.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-30 DOI: 10.1186/s12951-024-03004-3
Linh Nguyen, Tiep Tien Nguyen, Ju-Yeon Kim, Jee-Heon Jeong
{"title":"Advanced siRNA delivery in combating hepatitis B virus: mechanistic insights and recent updates.","authors":"Linh Nguyen, Tiep Tien Nguyen, Ju-Yeon Kim, Jee-Heon Jeong","doi":"10.1186/s12951-024-03004-3","DOIUrl":"10.1186/s12951-024-03004-3","url":null,"abstract":"<p><p>Hepatitis B virus (HBV) infection is a major health problem, causing thousands of deaths each year worldwide. Although current medications can often inhibit viral replication and reduce the risk of liver carcinoma, several obstacles still hinder their effectiveness. These include viral resistance, prolonged treatment duration, and low efficacy in clearing viral antigens. To address these challenges in current HBV treatment, numerous approaches have been developed with remarkable success. Among these strategies, small-interfering RNA (siRNA) stands out as one of the most promising therapies for hepatitis B. However, naked siRNAs are vulnerable to enzymatic digestion, easily eliminated by renal filtration, and unable to cross the cell membrane due to their large, anionic structure. Therefore, effective delivery systems are required to protect siRNAs and maintain their functionality. In this review, we have discussed the promises of siRNA therapy in treating HBV, milestones in their delivery systems, and products that have entered clinical trials. Finally, we have outlined the future perspectives of siRNA-based therapy for HBV treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"745"},"PeriodicalIF":10.6,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing radiotherapy in triple-negative breast cancer with hesperetin-induced ferroptosis via AURKA targeting nanocomposites.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-30 DOI: 10.1186/s12951-024-02987-3
Yang Guo, Huan Wang, Xinlei Wang, Keyan Chen, Liang Feng
{"title":"Enhancing radiotherapy in triple-negative breast cancer with hesperetin-induced ferroptosis via AURKA targeting nanocomposites.","authors":"Yang Guo, Huan Wang, Xinlei Wang, Keyan Chen, Liang Feng","doi":"10.1186/s12951-024-02987-3","DOIUrl":"10.1186/s12951-024-02987-3","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive cancer type that lacks targeted treatment options. Ferroptosis, a novel therapeutic strategy, induces cell death by disrupting the oxidative-reductive balance. Hesperetin, a potential TNBC therapeutic drug, has unidentified regulatory targets. The objective of this study was to explore the potential targets of hesperetin in TNBC and investigate whether the nanocomposites carrier hesperetin-loaded ferroptosis-inducing nanocomposites (HFPN), which activates ferroptosis, can enhance the anti-tumor efficacy of hesperetin. Bioinformatics methods were employed to screen hesperetin targets in TNBC, and a molecular docking model between hesperetin and the core target aurora kinase A (AURKA) was successfully constructed. The stability and anti-tumor activity of HFPN were validated in cell and mouse models, including tumor suppression and increased radiation sensitivity. These results suggest that HFPN can regulate the core target AURKA in TNBC, disrupt tumor oxidative-reductive balance, promote ferroptosis in tumor cells, and ultimately enhance the effectiveness of radiation therapy for TNBC.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"744"},"PeriodicalIF":10.6,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Albumin-seeking near-infrared-II probe evaluating blood-brain barrier disruption in stroke.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-29 DOI: 10.1186/s12951-024-02973-9
Hong-Jing Zhu, Ying-Ying Sun, Yijing Du, Sheng-Yu Zhou, Yang Qu, Shu-Yan Pang, Shoujun Zhu, Yi Yang, Zhen-Ni Guo
{"title":"Albumin-seeking near-infrared-II probe evaluating blood-brain barrier disruption in stroke.","authors":"Hong-Jing Zhu, Ying-Ying Sun, Yijing Du, Sheng-Yu Zhou, Yang Qu, Shu-Yan Pang, Shoujun Zhu, Yi Yang, Zhen-Ni Guo","doi":"10.1186/s12951-024-02973-9","DOIUrl":"10.1186/s12951-024-02973-9","url":null,"abstract":"<p><strong>Background: </strong>Blood-brain barrier (BBB) disruption after stroke is closely associated with brain tissue edema and neuronal injury, which requires accurate assessment. However, there is a lack of appropriate BBB imaging modality in vivo. As albumin in the blood could cross the damaged BBB into brain tissue after stroke, it serves as a biomarker for BBB disruption. Therefore, we aimed to develop an albumin-seeking near-infrared (NIR) probe to assess BBB disruption in stroke.</p><p><strong>Results: </strong>We proposed a chemoselective strategy for seeking albumin with NIR dyes and identified an optimal probe to evaluate BBB disruption in stroke. The probe combined a NIR fluorescent dye with inherent albumin-targeting moieties and exhibited high affinity and selectivity for binding to albumin. Using a mouse stroke model, the probe displayed a high-resolution visualization of the location and extent of BBB disruption in vivo and correlated well with BBB leakage measured by Evans blue ex vivo. A dual-channel NIR-II imaging was successfully used to simultaneously assess BBB disruption and cerebral perfusion after stroke. Furthermore, we applied this method to dynamically evaluate the BBB disruption process and reperfusion of thrombolytic therapy in a stroke model in real time, which showed excellent application value.</p><p><strong>Conclusions: </strong>We developed an albumin-seeking NIR probe that accurately evaluated BBB disruption in a safe, non-invasive and real-time manner in various stroke models, and has a great potential guiding stroke treatment in a real-time manner.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"742"},"PeriodicalIF":10.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate HER2 determination in breast cancer: a prominent COF-immobilized enzyme-enhanced electrochemical aptasensor employing 4-acetamidophenol as an efficient mediator.
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-29 DOI: 10.1186/s12951-024-03035-w
Yue Zhang, Shuyi Chen, Jie Ma, Xiaobin Zhou, Xinchen Sun, Chenglin Zhou
{"title":"Accurate HER2 determination in breast cancer: a prominent COF-immobilized enzyme-enhanced electrochemical aptasensor employing 4-acetamidophenol as an efficient mediator.","authors":"Yue Zhang, Shuyi Chen, Jie Ma, Xiaobin Zhou, Xinchen Sun, Chenglin Zhou","doi":"10.1186/s12951-024-03035-w","DOIUrl":"10.1186/s12951-024-03035-w","url":null,"abstract":"<p><p>An effective strategy for enzyme-enhanced electrochemical detection of human epidermal growth factor receptor 2 (HER2) is proposed for breast cancer diagnosis. This strategy utilizes a three-dimensional mesoporous covalent organic framework (COF), immobilized horseradish peroxidase (HRP), and a novel redox mediator, 4-acetamidophenol (APAP). The mesoporous structure, with encapsulation effect, and good biocompatibility of COF, makes the functionalized COF an efficient carrier for HRP immobilization (HRP-Ab-AuNPs@COF). It demonstrates superior catalytic activity, stability, and electrochemical performance compared to free HRP, thus making it an ideal probe for simultaneous target recognition and signal amplification. APAP is screened from four candidate phenolic compounds based on its high formal potential (0.32 V vs. Ag/AgCl), rapid electron transfer activity (k<sub>app</sub> = 2.80 × 10<sup>5</sup> M<sup>- 1</sup> s<sup>- 1</sup>), excellent solubility and stability. These properties prove significantly better than the conventional mediator hydroquinone (HQ), achieving a higher signal-to-background ratio. By integrating decorated multi-walled carbon nanotubes as substrate materials, the electrochemical aptasensor achieves a low HER2 detection limit (0.418 pg mL<sup>- 1</sup>) with high specificity. This method's selectivity surpasses that of the HQ-mediated method by 59-73%. Moreover, the aptasensor can effectively distinguish breast cancer patients and healthy individuals, as well as patients at different stages of the disease with high accuracy (AUC = 0.928). This performance exceeds traditional biomarkers CEA and CA15-3. This work paves novel avenues for innovative applications of COF-immobilized enzymes and the novel mediator APAP in electrochemical biosensing, thus holding significant promise for individualized breast cancer diagnosis and treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"743"},"PeriodicalIF":10.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信