hUMSC-Exosomes suppress TREM1-p38 MAPK signaling via HMGB1-dependent mechanisms to reprogram microglial function and promote neuroprotection in ischemic stroke.
IF 12.6 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zengyu Zhang, Rong Ji, Zhuohang Liu, Zhiwen Jiang, Min Chu, Yong Wang, Jing Zhao
{"title":"hUMSC-Exosomes suppress TREM1-p38 MAPK signaling via HMGB1-dependent mechanisms to reprogram microglial function and promote neuroprotection in ischemic stroke.","authors":"Zengyu Zhang, Rong Ji, Zhuohang Liu, Zhiwen Jiang, Min Chu, Yong Wang, Jing Zhao","doi":"10.1186/s12951-025-03652-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic stroke induces profound neuroinflammation, where microglial activation exacerbates secondary brain injury. Human umbilical mesenchymal stem cell-derived exosomes (hUMSC-Exos) exhibit therapeutic potential, but their mechanisms in modulating microglial responses remain incompletely understood.</p><p><strong>Results: </strong>Following intranasal administration, hUMSC-Exos selectively accumulated in ischemic brain regions and were internalized by microglia. In transient middle cerebral artery occlusion (tMCAO) mice, hUMSC-Exos improved neurological outcomes, reduced neuronal apoptosis, and promoted a sustained shift in microglial polarization toward an anti-inflammatory phenotype-evidenced by suppressed pro-inflammatory and elevated anti-inflammatory markers in peri-infarct areas. These effects were replicated in LPS/IFN-γ-stimulated primary microglia and BV2 cells. Microglia-specific RNA sequencing revealed that hUMSC-Exos reversed tMCAO-induced pro-inflammatory and migratory transcriptional programs, concurrently suppressing p38 MAPK while activating immunoregulatory pathways. TREM1 emerged as a critical node, with hUMSC-Exos downregulating its expression in microglia; pharmacological TREM1 inhibition (LP17) synergistically augmented the suppression of microglial activation, migration, and proliferation. Mechanistically, hUMSC-Exos attenuated NF-κB/p38 MAPK signaling, with TREM1 functioning upstream of p38 (validated by overexpression/reversal). Proteomic analysis identified HMGB1 as a key exosomal cargo-its blockade (glycyrrhizin) partially reversed hUMSC-Exos-mediated effects, restoring TREM1 expression and pro-inflammatory cytokine release, thus positioning HMGB1 upstream of TREM1.</p><p><strong>Conclusions: </strong>Our findings delineate a novel HMGB1-TREM1-p38 MAPK axis through which hUMSC-Exos mitigate post-stroke neuroinflammation. By delivering HMGB1, hUMSC-Exos inhibit TREM1-dependent NF-κB/p38 activation, reprogram microglial function, and confer neuroprotection. Validated across in vivo, primary, and BV2 microglial models, and supported by multi-omics analyses, this study establishes hUMSC-Exos as a promising cell-free therapy targeting microglial reprogramming for ischemic stroke recovery.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"572"},"PeriodicalIF":12.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03652-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ischemic stroke induces profound neuroinflammation, where microglial activation exacerbates secondary brain injury. Human umbilical mesenchymal stem cell-derived exosomes (hUMSC-Exos) exhibit therapeutic potential, but their mechanisms in modulating microglial responses remain incompletely understood.
Results: Following intranasal administration, hUMSC-Exos selectively accumulated in ischemic brain regions and were internalized by microglia. In transient middle cerebral artery occlusion (tMCAO) mice, hUMSC-Exos improved neurological outcomes, reduced neuronal apoptosis, and promoted a sustained shift in microglial polarization toward an anti-inflammatory phenotype-evidenced by suppressed pro-inflammatory and elevated anti-inflammatory markers in peri-infarct areas. These effects were replicated in LPS/IFN-γ-stimulated primary microglia and BV2 cells. Microglia-specific RNA sequencing revealed that hUMSC-Exos reversed tMCAO-induced pro-inflammatory and migratory transcriptional programs, concurrently suppressing p38 MAPK while activating immunoregulatory pathways. TREM1 emerged as a critical node, with hUMSC-Exos downregulating its expression in microglia; pharmacological TREM1 inhibition (LP17) synergistically augmented the suppression of microglial activation, migration, and proliferation. Mechanistically, hUMSC-Exos attenuated NF-κB/p38 MAPK signaling, with TREM1 functioning upstream of p38 (validated by overexpression/reversal). Proteomic analysis identified HMGB1 as a key exosomal cargo-its blockade (glycyrrhizin) partially reversed hUMSC-Exos-mediated effects, restoring TREM1 expression and pro-inflammatory cytokine release, thus positioning HMGB1 upstream of TREM1.
Conclusions: Our findings delineate a novel HMGB1-TREM1-p38 MAPK axis through which hUMSC-Exos mitigate post-stroke neuroinflammation. By delivering HMGB1, hUMSC-Exos inhibit TREM1-dependent NF-κB/p38 activation, reprogram microglial function, and confer neuroprotection. Validated across in vivo, primary, and BV2 microglial models, and supported by multi-omics analyses, this study establishes hUMSC-Exos as a promising cell-free therapy targeting microglial reprogramming for ischemic stroke recovery.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.