Ferritin-armed extracellular vesicles with enhanced BBB penetration and tumor-targeting ability for synergistic therapy against glioblastoma.

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Guihong Lu, Peiling Zhuang, Feng Li, Fan Zhang, Xiaoyan Li, Weixiu Wang, Hui Tan
{"title":"Ferritin-armed extracellular vesicles with enhanced BBB penetration and tumor-targeting ability for synergistic therapy against glioblastoma.","authors":"Guihong Lu, Peiling Zhuang, Feng Li, Fan Zhang, Xiaoyan Li, Weixiu Wang, Hui Tan","doi":"10.1186/s12951-025-03646-x","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is an aggressive brain cancer with a high mortality rate and limited treatment options. Metabolism-based synergistic therapy holds promise for GBM treatment, however, its efficacy is significantly impeded by poor blood-brain barrier (BBB) penetration, inadequate targeting of GBM cells, and systemic drug-related side effects. To address these challenges, we herein developed a dual-targeting nanoplatform, EVs@siMCT4-HFn@AuMn, by arming siMCT4-loaded M1-type microglia-derived extracellular vesicles (EVs) with ultrasmall nano-Au/MnO<sub>2</sub>-loaded H-ferritin (HFn). This nanoplatform enhances tumor accumulation through cooperative BBB penetration and the GBM-targeting properties of EVs and HFn. Within the GBM microenvironment, siMCT4 silences MCT4 expression, inhibitits lactate (LA) efflux, increases the intracellular LA levels to induce glioma cell apoptosis via LA metabolic therapy, and reduces extracellular LA to achieve M2-to-M1 polarization of tumor-associated macrophages for immunomodulation of the tumor microenvironment. Concurrently, the delivered ultrasmall nano-Au consumes glucose for starvation therapy and facilitates H<sub>2</sub>O<sub>2</sub> production, which is utilized by the co-delivered ultrasmall nano-MnO<sub>2</sub> to generate cytotoxic hydroxyl radicals (•OH), further enhancing tumor cell eradication. This synergistic approach effectively suppresses tumor growth in a glioma xenograft model with negligible side effects, highlighting the potential of EVs@siMCT4-HFn@AuMn as a flexible and powerful platform for metabolism-based multimodal GBM therapies.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"570"},"PeriodicalIF":12.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03646-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma multiforme (GBM) is an aggressive brain cancer with a high mortality rate and limited treatment options. Metabolism-based synergistic therapy holds promise for GBM treatment, however, its efficacy is significantly impeded by poor blood-brain barrier (BBB) penetration, inadequate targeting of GBM cells, and systemic drug-related side effects. To address these challenges, we herein developed a dual-targeting nanoplatform, EVs@siMCT4-HFn@AuMn, by arming siMCT4-loaded M1-type microglia-derived extracellular vesicles (EVs) with ultrasmall nano-Au/MnO2-loaded H-ferritin (HFn). This nanoplatform enhances tumor accumulation through cooperative BBB penetration and the GBM-targeting properties of EVs and HFn. Within the GBM microenvironment, siMCT4 silences MCT4 expression, inhibitits lactate (LA) efflux, increases the intracellular LA levels to induce glioma cell apoptosis via LA metabolic therapy, and reduces extracellular LA to achieve M2-to-M1 polarization of tumor-associated macrophages for immunomodulation of the tumor microenvironment. Concurrently, the delivered ultrasmall nano-Au consumes glucose for starvation therapy and facilitates H2O2 production, which is utilized by the co-delivered ultrasmall nano-MnO2 to generate cytotoxic hydroxyl radicals (•OH), further enhancing tumor cell eradication. This synergistic approach effectively suppresses tumor growth in a glioma xenograft model with negligible side effects, highlighting the potential of EVs@siMCT4-HFn@AuMn as a flexible and powerful platform for metabolism-based multimodal GBM therapies.

具有增强血脑屏障穿透和肿瘤靶向能力的铁蛋白武装细胞外囊泡对胶质母细胞瘤的协同治疗。
多形性胶质母细胞瘤(GBM)是一种具有高死亡率和有限治疗选择的侵袭性脑癌。以代谢为基础的协同疗法有望治疗GBM,然而,其疗效受到血脑屏障(BBB)穿透性差、GBM细胞靶向不足以及全身药物相关副作用的显著阻碍。为了解决这些挑战,我们在此开发了一个双靶向纳米平台EVs@siMCT4-HFn@AuMn,通过将装载simct4的m1型小胶质细胞源性细胞外囊泡(ev)与装载au / mno2的超小纳米h -铁蛋白(HFn)结合。该纳米平台通过协同渗透血脑屏障以及ev和HFn的gbm靶向特性来促进肿瘤积累。在GBM微环境中,siMCT4沉默MCT4表达,抑制乳酸(LA)外排,增加细胞内LA水平,通过LA代谢治疗诱导胶质瘤细胞凋亡,降低细胞外LA,实现肿瘤相关巨噬细胞M2-to-M1极化,对肿瘤微环境进行免疫调节。同时,递送的超小纳米au消耗葡萄糖进行饥饿治疗,促进H2O2的产生,H2O2被协同递送的超小纳米mno2利用产生细胞毒性羟基自由基(•OH),进一步增强肿瘤细胞的根除能力。这种协同方法有效抑制胶质瘤异种移植模型中的肿瘤生长,副作用可忽略不计,突出了EVs@siMCT4-HFn@AuMn作为基于代谢的多模式GBM治疗的灵活而强大的平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信