Yongshun Zheng, Ran Jia, Jun Li, Xiaohe Tian, Yeben Qian
{"title":"Expression of Concern: Curcumin- and resveratrol-co-loaded nanoparticles in synergistic treatment of hepatocellular carcinoma.","authors":"Yongshun Zheng, Ran Jia, Jun Li, Xiaohe Tian, Yeben Qian","doi":"10.1186/s12951-025-03361-7","DOIUrl":"https://doi.org/10.1186/s12951-025-03361-7","url":null,"abstract":"","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"288"},"PeriodicalIF":10.6,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143970315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biopolymer-based bone scaffold for controlled Pt (IV) prodrug release and synergistic photothermal-chemotherapy and immunotherapy in osteosarcoma.","authors":"Zuyun Yan, Youwen Deng, Liping Huang, Jin Zeng, Dong Wang, Zhaochen Tong, Qizhi Fan, Wei Tan, Jinpeng Yan, Xiaofang Zang, Shijie Chen","doi":"10.1186/s12951-025-03253-w","DOIUrl":"https://doi.org/10.1186/s12951-025-03253-w","url":null,"abstract":"<p><p>Achieving bone defect repair while preventing tumor recurrence after osteosarcoma surgery has consistently posed a clinical challenge. Local treatment with 3D-printed scaffolds loaded with chemotherapeutic drugs can exert certain effects in tumor inhibition and bone regeneration. However, the non-specific activation of chemotherapeutic drugs leads to high local toxic side effects and the formation of an immunosuppressive tumor microenvironment, thereby limiting their clinical application and therapeutic efficacy. To address this, we designed a Pt (IV) prodrug with low toxicity and minimal side effects, which releases Pt (II) in response to glutathione. This prodrug was grafted onto polydopamine (PDA) through an amidation reaction, resulting in a composite nanomaterial (PDA@Pt) that possesses both photothermal synergistic chemotherapy and immuno-oncological properties. Subsequently, we innovatively employed selective laser sintering technology to incorporate PDA@Pt into a poly (L-lactic acid)/bioactive glass matrix, successfully constructing a composite scaffold with dual anti-tumor and bone repair capabilities. The study revealed that the composite scaffold significantly inhibited the growth of osteosarcoma cells and activated the cGAS-STING pathway by inducing DNA damage, ultimately converting the 'cold tumor' into a 'hot tumor.' Additionally, the composite scaffold could induce osteogenic differentiation of bone marrow mesenchymal stem cells and exhibited excellent bone repair capabilities in vivo.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"286"},"PeriodicalIF":10.6,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143997981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeonseo Park, Tejal V Patil, Changyeun Mo, Ki-Taek Lim
{"title":"Nanodiamond: a multifaceted exploration of electrospun nanofibers for antibacterial and wound healing applications.","authors":"Hyeonseo Park, Tejal V Patil, Changyeun Mo, Ki-Taek Lim","doi":"10.1186/s12951-025-03351-9","DOIUrl":"https://doi.org/10.1186/s12951-025-03351-9","url":null,"abstract":"<p><p>In this review, we explore the exciting potential of nanodiamonds (NDs) as innovative materials for future wound dressings. These materials aim to tackle important issues in wound care and offer fresh solutions. While NDs show promising mechanical and structural properties, their full potential in wound healing applications is still not fully explored. We emphasize their unique features-like high surface area, the dispersion of functional groups, and excellent purity-which contribute to their mechanical stability, adhesion, growth, and movement-all critical for effective wound healing and tissue repair. We also focused on modifying the surface of these particles using various functionalization, which can enhance their biocompatibility, antibacterial properties, heat conductivity, and wettability. This positions NDs as a powerful tool for improving chronic wound care in the future. However, there are notable challenges when it comes to scaling up ND-based nanofiber matrices, which currently limits the electrospinning process for mass production. Also, issues with the physical and chemical stability of ND-based nanofibers when interacting with cells need to be resolved to guarantee long-lasting effectiveness. In this study, we tackle these challenges by suggesting solutions like surface functionalization, optimizing the electrospinning process, and creating hybrid scaffolds. Our findings show that these innovations can effectively address scalability and stability issues, paving the way for broader clinical applications. This review not only emphasizes the advantages of NDs in wound healing but also introduces new insights for enhancing the biocompatibility and functionality of ND-based nanofibers, finally pushing the technology of wound dressings forward.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"285"},"PeriodicalIF":10.6,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solpa Lee, Hyunsoo Kim, Minwoo Kim, Ryun Kang, Inje Lim, Yongwoo Jang
{"title":"Rapid and simple on-site salmonella detection in food via direct sample loading using a lipopolysaccharide-imprinted polymer.","authors":"Solpa Lee, Hyunsoo Kim, Minwoo Kim, Ryun Kang, Inje Lim, Yongwoo Jang","doi":"10.1186/s12951-025-03341-x","DOIUrl":"10.1186/s12951-025-03341-x","url":null,"abstract":"<p><p>Salmonella is a major foodborne pathogen that causes salmonellosis, which is characterized by symptoms such as diarrhea, fever, and abdominal cramps. Existing methods for detecting Salmonella, such as culture plating, ELISA, and PCR, are accurate but time-consuming and unsuitable for on-site applications. In this study, we developed a rapid and sensitive electrochemical sensor using a molecularly imprinted polymer (MIP) to detect Salmonella typhimurium (S. typhimurium) by targeting lipopolysaccharides (LPS). Polydopamine (PDA) was used as the polymer matrix because of its cost-efficiency and functional versatility. The sensor demonstrated high sensitivity and selectivity, with a detection limit of 10 CFU/mL and a linear response over the 10²-10⁸ CFU/mL range. The specificity of the sensor was validated against other gram-positive and gram-negative bacteria and showed no significant cross-reactivity. Furthermore, the sensor performed effectively in real food samples, including tap water, milk, and pork, without complex preprocessing. These results highlight the potential of the LPS-imprinted MIP sensor for practical on-site detection of S. typhimurium, improving food safety monitoring and preventing outbreaks in food-handling environments.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"279"},"PeriodicalIF":10.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microenvironment-adaptive nanomedicine MXene promotes flap survival by inhibiting ROS cascade and endothelial pyroptosis.","authors":"Ningning Yang, Rongrong Hua, Yingying Lai, Peijun Zhu, Jian Ding, Xianhui Ma, Gaoxiang Yu, Yiheng Xia, Chao Liang, Weiyang Gao, Zhouguang Wang, Hongyu Zhang, Liangliang Yang, Kailiang Zhou, Lu Ge","doi":"10.1186/s12951-025-03343-9","DOIUrl":"10.1186/s12951-025-03343-9","url":null,"abstract":"<p><p>In the field of large-area trauma flap transplantation, preventing avascular necrosis remains a critical challenge. Key mechanisms for improving flap viability include angiogenesis promotion, oxidative stress inhibition, and cell death prevention. Recently, two-dimensional ultrathin Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> (MXene) nanosheets have gained attention for their potential contributions to these processes, though MXene's physiological impact on flap survival had not been previously investigated. This study is the first to confirm MXene's biological effects on the ischaemic microenvironment post-skin flap transplantation. Findings indicated that MXene significantly decreased the necrotic area in ischaemic flaps (37.96% ± 2.00%), with reductions of 30.40% ± 1.86% at 1 mg/mL and 20.19% ± 2.11% at 2 mg/mL in a concentration-dependent manner. Mechanistically, MXene facilitated in situ angiogenesis, mitigated oxidative stress, suppressed pro-inflammatory pyroptosis, and activated the PI3K-Akt pathway, particularly influencing vascular endothelial cells. Comparative transcriptome analysis of skin tissues with and without MXene treatment provided additional evidence, highlighting mechanisms such as pro-inflammatory pyroptosis, ROS metabolic processes, endothelial cell proliferation regulation, and PI3K-Akt signaling pathway activation. Overall, MXene demonstrated biological activity, effectively promoting ischaemic flaps survival and presenting a novel strategy for addressing ischaemic necrosis in skin flaps.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"282"},"PeriodicalIF":10.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Yu, Jun-Rui Hu, Yi Tian, Yu-Meng Lei, Hai-Man Hu, Bing-Song Lei, Ge Zhang, Yao Sun, Hua-Rong Ye
{"title":"Nanosensitizer-assisted sonodynamic therapy for breast cancer.","authors":"Jing Yu, Jun-Rui Hu, Yi Tian, Yu-Meng Lei, Hai-Man Hu, Bing-Song Lei, Ge Zhang, Yao Sun, Hua-Rong Ye","doi":"10.1186/s12951-025-03311-3","DOIUrl":"10.1186/s12951-025-03311-3","url":null,"abstract":"<p><p>Breast cancer is the most commonly diagnosed cancer worldwide. Despite advancements in therapeutic modalities, its prognosis remains poor owing to complex clinical, pathological, and molecular characteristics. Sonodynamic therapy (SDT) is a promising approach for tumor elimination, using sonosensitizers that preferentially accumulate in tumor tissues and are activated by low-intensity ultrasound to produce reactive oxygen species. However, the clinical translation of SDT faces challenges, including the limited efficiency of sonosensitizers and resistance posed by the tumor microenvironment. The emergence of nanomedicine offers innovative strategies to address these obstacles. This review discusses strategies for enhancing the efficacy of SDT using sonosensitizers, including rational structural modifications, improved tumor-targeted enrichment, tumor microenvironment remodeling, and imaging-guided therapy. Additionally, SDT-based multimodal therapies, such as sono-chemotherapy, sono-immunotherapy, and sono-photodynamic therapy, and their potential applications in breast cancer treatment are summarized. The underlying mechanisms of SDT in breast cancer are briefly outlined. Finally, this review highlights current challenges and prospects for the clinical translation of SDT, providing insights into future advancements that may improve therapeutic outcomes for breast cancer.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"281"},"PeriodicalIF":10.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huaiyuan Zhang, Yu Wang, Wenyu Qiao, Xueneng Hu, Huifen Qiang, Kuo Xia, Longhai Du, Luling Yang, Yi Bao, Jie Gao, Tinglin Zhang, Zuochong Yu
{"title":"An injectable multifunctional nanocomposite hydrogel promotes vascularized bone regeneration by regulating macrophages.","authors":"Huaiyuan Zhang, Yu Wang, Wenyu Qiao, Xueneng Hu, Huifen Qiang, Kuo Xia, Longhai Du, Luling Yang, Yi Bao, Jie Gao, Tinglin Zhang, Zuochong Yu","doi":"10.1186/s12951-025-03358-2","DOIUrl":"10.1186/s12951-025-03358-2","url":null,"abstract":"<p><p>The local inflammatory microenvironment, insufficient vascularization, and inadequate bone repair materials are the three key factors that constrain the repair of bone defects. Here, we synthesized a composite nanoparticle, TPQ (TCP-PDA-QK), with a core‒shell structure. The core consists of nanotricalcium phosphate (TCP), and the shell is derived from polydopamine (PDA). The surface of the shell is modified with a vascular endothelial growth factor (VEGF) mimic peptide (QK peptide). TPQ was then embedded in porous methacrylate gelatin (GelMA) to form a TPQGel hydrogel. In the inflammatory environment, the TPQGel hydrogel can gradually release drugs through pH responsiveness, promoting M2 macrophage polarization, vascularization and bone regeneration in turn. In addition, reprogrammed M2 macrophages stimulate the generation of anti-inflammatory and pro-healing growth factors, which provide additional support for angiogenesis and bone regeneration. The TPQGel hydrogel can not only accurately fill irregular bone defects but also has excellent biocompatibility, making it highly suitable for the minimally invasive treatment of bone defects. Transcriptomic tests revealed that the TPQGel hydrogel achieved macrophage reprogramming by regulating the PI3K-AKT signalling pathway. Overall, the TPQGel hydrogel can be harnessed for safe and efficient therapeutics that accelerate the repair of bone defects.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"283"},"PeriodicalIF":10.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Macrophage membrane coated nanoscale coordination polymers promote graft survival in allogeneic transplantation.","authors":"Haili Bao, Shaohua Song, Hao Liu, Demei Sun, Xinyuan Zhu, Zhiren Fu, Youfu Wang, Jinghui Yang","doi":"10.1186/s12951-025-03226-z","DOIUrl":"10.1186/s12951-025-03226-z","url":null,"abstract":"<p><p>Organ transplantation is a crucial life-saving procedure for patients suffering from end-stage organ failure, yet it faces a global shortage. This scarcity not only impacts individual patients but also places strain on healthcare systems worldwide. However, the risk of rejection adds another layer of difficulty to this already intricate medical procedure. Herein, we present the design and synthesis of graft-targeting macrophage membrane coated nanoscale coordination polymers (dNCPs@MM), in which dexamethasone sodium phosphate (DEXp) serves as an effective immunosuppressive drug, Fe<sup>3+</sup> acts as bridging ligands for coordination-driven self-assembly with cargo molecules, and macrophage membranes are utilized to reduce uptake by the immune system as well as a retarder to enhance the blood circulation time. The high drug loading, responsive release behavior and targeting capability of the obtained dNCPs@MM promote their biological performance. In a murine allogeneic heart transplantation model, dNCPs@MM exhibited remarkable efficacy in attenuating acute rejection at a low dosage, with a mean survival time of 14.7 days compared to 8.6 days for DEXp and 9.3 days for dNCPs treatment. At a high dosage, dNCPs@MM exhibited the ability to control established rejection by inducing exhaustion in both CD4<sup>+</sup> and CD8<sup>+</sup> T cell and preventing of alloreactive T cells from acquiring effector (CD44<sup>hi</sup>CD62L<sup>-</sup>) functions. Moreover, while high doses of DEXp or dNCPs treatment led to significant adverse effects, the administration of dNCPs@MM demonstrates tolerable adverse effects even at high dosage levels. Therefore, dNCPs@MM exhibits promising potential for clinical application in addressing rejections in allografts and xenografts.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"284"},"PeriodicalIF":10.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Wu, Chao Wang, Yuhan Guo, Yunhong Zhang, Xue Zhang, Pan Wang, Wei Yue, Xin Zhu, Zhaofei Liu, Yu Zhang, Hongyan Guo, Lin Han, Mo Li
{"title":"Small extracellular vesicle-based one-step high-throughput microfluidic platform for epithelial ovarian cancer diagnosis.","authors":"Yu Wu, Chao Wang, Yuhan Guo, Yunhong Zhang, Xue Zhang, Pan Wang, Wei Yue, Xin Zhu, Zhaofei Liu, Yu Zhang, Hongyan Guo, Lin Han, Mo Li","doi":"10.1186/s12951-025-03348-4","DOIUrl":"10.1186/s12951-025-03348-4","url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer (OC) is diagnosed at advanced stages, resulting in limited treatment options for patients. While early detection of OC has been investigated, the invasiveness of approaches, high sample requirements, or false-positive rates undermined its benefits. Here, we present a \"one-step\" high-throughput microfluidic platform for epithelial ovarian cancer (EOC) detection that integrates small extracellular vesicle (sEV) capture, in situ lysis, and protein biomarker detection.</p><p><strong>Results: </strong>We identified 1,818 differentially expressed proteins (DEPs) through proteomic analysis of sEVs from patients' serum, combined with cell lines. Through multi-step screening of DEPs, we identified EOC biomarkers to customize the microfluidic platform. We used the microfluidic platform to test the expression of EOC biomarkers with 2 µL of serum from 209 participants in a prospective cohort. Based on the test results, an EOC detection model (P9) was constructed, which achieved a sensitivity of 92.3% (95% CI, 75.9-97.9%) for stage I, 90.0% (95% CI, 69.9-97.2%) for stage II at a specificity of 98.8% (95% CI, 93.6-99.8%) in the training set. The specificities reached 98.8% (95% CI, 93.6-99.8%) in the training set and 100.0% (95% CI, 91.6-100.0%) in the validation set of a held-out group of 105 participants. A model combining the P9 and patient's CA125 value exhibited 100.0% (95% CI, 95.6-100%) specificity in both training and validation, without compromising sensitivity.</p><p><strong>Conclusions: </strong>We developed a non-invasive high-throughput microfluidic platform for EOC sEV-derived biomarker detection. It significantly reduced false positives and sample volume. Given its convenience and low cost, this platform could advance OC early detection to benefit of women.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"278"},"PeriodicalIF":10.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}