Kingsley Miyanda Tembo, Xiaohui Wang, Mansoor Bolideei, Qianrui Liu, Farouk Baboni, Mohammad Javad Mehran, Fei Sun, Cong-Yi Wang
{"title":"Exploring the bioactivity of MicroRNAs Originated from Plant-derived Exosome-like Nanoparticles (PELNs): current perspectives.","authors":"Kingsley Miyanda Tembo, Xiaohui Wang, Mansoor Bolideei, Qianrui Liu, Farouk Baboni, Mohammad Javad Mehran, Fei Sun, Cong-Yi Wang","doi":"10.1186/s12951-025-03602-9","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes, nano-sized extracellular vesicles, facilitate intercellular communication by transferring biomolecules such as microRNAs (miRNAs), which are key regulators of gene expression. While mammalian-derived exosomes (MDEs) have shown therapeutic promise, their clinical application has been limited by challenges such as immune-related toxicities, low yield and high production costs. In contrast, plant-derived exosome-like nanoparticles (PELNs) offer a sustainable, biocompatible, and cost-effective alternative, encapsulating a diverse array of bioactive miRNAs with significant therapeutic potential. Studies have demonstrated the ability of PELN-derived miRNAs in cross-kingdom communication, effectively transferring into mammalian cells, where they modulate disease-related pathways, including cancer, inflammation, metabolism, and neurodegeneration. This review explores the bioactivity of plant-derived miRNAs, highlighting their role as novel therapeutic agents. The study explores the bioactivity and potential mechanisms by which these miRNAs influence human cellular processes, focusing on their ability to regulate gene expression in different tissues. Additionally, the study examines recent advances in PELN research, emphasizing their potential for clinical translation in precision medicine, and highlights challenges and future prospects in harnessing the therapeutic capabilities of these bioactive miRNAs. This review underscores the potential of PELNs to revolutionize therapeutic strategies, offering a sustainable, biocompatible, and cost-effective platform for targeted miRNA delivery, paving the way for innovative interventions leveraging nature's own nanocarriers.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"563"},"PeriodicalIF":12.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03602-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes, nano-sized extracellular vesicles, facilitate intercellular communication by transferring biomolecules such as microRNAs (miRNAs), which are key regulators of gene expression. While mammalian-derived exosomes (MDEs) have shown therapeutic promise, their clinical application has been limited by challenges such as immune-related toxicities, low yield and high production costs. In contrast, plant-derived exosome-like nanoparticles (PELNs) offer a sustainable, biocompatible, and cost-effective alternative, encapsulating a diverse array of bioactive miRNAs with significant therapeutic potential. Studies have demonstrated the ability of PELN-derived miRNAs in cross-kingdom communication, effectively transferring into mammalian cells, where they modulate disease-related pathways, including cancer, inflammation, metabolism, and neurodegeneration. This review explores the bioactivity of plant-derived miRNAs, highlighting their role as novel therapeutic agents. The study explores the bioactivity and potential mechanisms by which these miRNAs influence human cellular processes, focusing on their ability to regulate gene expression in different tissues. Additionally, the study examines recent advances in PELN research, emphasizing their potential for clinical translation in precision medicine, and highlights challenges and future prospects in harnessing the therapeutic capabilities of these bioactive miRNAs. This review underscores the potential of PELNs to revolutionize therapeutic strategies, offering a sustainable, biocompatible, and cost-effective platform for targeted miRNA delivery, paving the way for innovative interventions leveraging nature's own nanocarriers.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.