{"title":"Gut microbiota contributes to polystyrene nanoplastics-induced fetal growth restriction by disturbing placental nicotinamide metabolism.","authors":"Yijing He, Qiao Li, Qinfeng Sun, Heran Li, Tianhang Yu, Miaoyu Chen, Genkui Zhang, Biao Zhang, Weihan Wang, Shiqiang Ju","doi":"10.1186/s12951-025-03650-1","DOIUrl":null,"url":null,"abstract":"<p><p>Polystyrene nanoplastics (PS-NPs) are ubiquitous in the environment, eliciting significant concerns about their possible risks to human health, especially reproductive health. Various reproductive toxicities of PS-NPs have been reported, however, information regarding the effects of PS-NPs exposure during pregnancy on offspring development and the underlying mechanisms remains limited. In this study, pregnant mice were orally administered PS-NPs (approximately 100 nm in diameter) at different concentrations (1, 10, and 100 mg/kg/day) for 17.5 consecutive days, from gestational day (GD) 0.5 to GD 17.5. The relevant samples were collected on GD 18.5 to investigate the intergenerational effects. The results indicated that PS-NPs induced placental injury and metabolic abnormalities, leading to adverse pregnancy outcomes. Specifically, PS-NPs exposure observably reduced the levels of nicotinamide (NAM) and nicotinamide adenine dinucleotide (NAD<sup>+</sup>) in the placenta, resulting in decreased ATP production, increased oxidative stress and ferroptosis. Meanwhile, PS-NPs disrupted the maternal gut microbiome, specifically manifested as a reduction in Lactobacillus levels and abundances of norank_f_Muribaculaceae, Turicibacter, Alloprevotella, Parabacteroides and Ruminococcus. Fecal microbial transplant (FMT) experiments demonstrated that the microbiota from PS-NPs-administered pregnant mice could similarly induce intestinal barrier damages and placental injury. Treatment with NAM effectively mitigated disruptions in placental metabolism and reversed the adverse pregnancy outcomes caused by PS-NPs. These findings highlight the novel role of the gut microbiota in PS-NPs-induced placental injury and adverse pregnancy outcomes, and suggest that NAM could serve as a promising preventative strategy against this intergenerational damage caused by PS-NPs.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"561"},"PeriodicalIF":12.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03650-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polystyrene nanoplastics (PS-NPs) are ubiquitous in the environment, eliciting significant concerns about their possible risks to human health, especially reproductive health. Various reproductive toxicities of PS-NPs have been reported, however, information regarding the effects of PS-NPs exposure during pregnancy on offspring development and the underlying mechanisms remains limited. In this study, pregnant mice were orally administered PS-NPs (approximately 100 nm in diameter) at different concentrations (1, 10, and 100 mg/kg/day) for 17.5 consecutive days, from gestational day (GD) 0.5 to GD 17.5. The relevant samples were collected on GD 18.5 to investigate the intergenerational effects. The results indicated that PS-NPs induced placental injury and metabolic abnormalities, leading to adverse pregnancy outcomes. Specifically, PS-NPs exposure observably reduced the levels of nicotinamide (NAM) and nicotinamide adenine dinucleotide (NAD+) in the placenta, resulting in decreased ATP production, increased oxidative stress and ferroptosis. Meanwhile, PS-NPs disrupted the maternal gut microbiome, specifically manifested as a reduction in Lactobacillus levels and abundances of norank_f_Muribaculaceae, Turicibacter, Alloprevotella, Parabacteroides and Ruminococcus. Fecal microbial transplant (FMT) experiments demonstrated that the microbiota from PS-NPs-administered pregnant mice could similarly induce intestinal barrier damages and placental injury. Treatment with NAM effectively mitigated disruptions in placental metabolism and reversed the adverse pregnancy outcomes caused by PS-NPs. These findings highlight the novel role of the gut microbiota in PS-NPs-induced placental injury and adverse pregnancy outcomes, and suggest that NAM could serve as a promising preventative strategy against this intergenerational damage caused by PS-NPs.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.