Journal of Nanobiotechnology最新文献

筛选
英文 中文
Nanozymes: a bibliometrics review. 纳米酶:文献计量学综述。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-13 DOI: 10.1186/s12951-024-02907-5
Zihan Feng, Yuexin Guo, Yicong Zhang, Aiqin Zhang, Meng Jia, Junfa Yin, Gangyi Shen
{"title":"Nanozymes: a bibliometrics review.","authors":"Zihan Feng, Yuexin Guo, Yicong Zhang, Aiqin Zhang, Meng Jia, Junfa Yin, Gangyi Shen","doi":"10.1186/s12951-024-02907-5","DOIUrl":"10.1186/s12951-024-02907-5","url":null,"abstract":"<p><p>As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"704"},"PeriodicalIF":10.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced graphene oxide loaded with tetrahedral framework nucleic acids for combating orthodontically induced root resorption. 负载有四面体框架核酸的还原氧化石墨烯,用于对抗正畸引起的牙根吸收。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-13 DOI: 10.1186/s12951-024-02988-2
Wenxiu Yuan, Maotuan Huang, Wenqian Chen, Sihang Chen, Jingwen Cai, Linxin Chen, Hanyu Lin, Kaixun He, Huachen Chen, Wenting Jiang, Yanjing Ou, Jiang Chen
{"title":"Reduced graphene oxide loaded with tetrahedral framework nucleic acids for combating orthodontically induced root resorption.","authors":"Wenxiu Yuan, Maotuan Huang, Wenqian Chen, Sihang Chen, Jingwen Cai, Linxin Chen, Hanyu Lin, Kaixun He, Huachen Chen, Wenting Jiang, Yanjing Ou, Jiang Chen","doi":"10.1186/s12951-024-02988-2","DOIUrl":"10.1186/s12951-024-02988-2","url":null,"abstract":"<p><p>Root resorption occurs outside the root or within the root canal. Regardless of its region, root resorption is irreversible and in severe cases, may even cause tooth loss. Clinically, the external surface root resorption is usually a side effect of orthodontic tooth movement. However, it is frustrating to note that there are almost no effective treatment strategies for orthodontically induced root resorption (OIRR) due to the complexity and ambiguity of etiology. In the current study, we successfully fabricated a delivery complex, reduced graphene oxide nanosheet loading with tetrahedral framework nucleic acids (tFNAs-rGO) through self-assembly. No significant cytotoxicity or organ-toxicity of the tFNAs-rGO complex was observed in cell counting kit-8 assay (CCK-8) and hematoxylin-eosin (HE) staining. Histological staining such as tartrate-resistant acid phosphatase (TRAP) staining and Micro-CT three-dimensional reconstruction were employed to explore the dynamic changes of root and peri-root tissues in OIRR mice. In vitro, we developed an induction microenvironment to testify the effects of the tFNAs-rGO delivery complex on periodontal ligament cells (PDLCs) and macrophages by quantitative RT-PCR, western blot, and immunofluorescence staining. The data showed the reduced the region of root resorption and downregulated osteoclastic activity in OIRR by the tFNAs-rGO complex treatment. Furthermore, our study demonstrated that the tFNAs-rGO delivery complex enhanced osteogenic differentiation of PDLCs and facilitated M2-phenotype polarization of macrophages to ameliorate OIRR. Collectively, the insight into the nanoscale dual-functional tFNAs-rGO delivery complex regulating the cell populations of PDLCs and macrophages in the root resorption remodeling proposes a promising therapeutic strategy for orthodontically induced root resorption.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"700"},"PeriodicalIF":10.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis. 炎症靶向输送尿石素 A 可减轻化学物质和免疫检查点抑制剂诱发的结肠炎。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-13 DOI: 10.1186/s12951-024-02990-8
Sweta Ghosh, Rajbir Singh, Tanu Jain Goap, Omprakash Sunnapu, Zachary M Vanwinkle, Hong Li, Syam P Nukavarapu, Gerald W Dryden, Bodduluri Haribabu, Praveen Kumar Vemula, Venkatakrishna Rao Jala
{"title":"Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis.","authors":"Sweta Ghosh, Rajbir Singh, Tanu Jain Goap, Omprakash Sunnapu, Zachary M Vanwinkle, Hong Li, Syam P Nukavarapu, Gerald W Dryden, Bodduluri Haribabu, Praveen Kumar Vemula, Venkatakrishna Rao Jala","doi":"10.1186/s12951-024-02990-8","DOIUrl":"10.1186/s12951-024-02990-8","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"701"},"PeriodicalIF":10.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preferential activation of type I interferon-mediated antitumor inflammatory signaling by CuS/MnO2/diAMP nanoparticles enhances anti-PD-1 therapy for sporadic colorectal cancer. CuS/MnO2/diAMP纳米粒子对I型干扰素介导的抗肿瘤炎症信号的优先激活增强了对散发性结直肠癌的抗PD-1疗法。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-12 DOI: 10.1186/s12951-024-02970-y
Jinrong Peng, Qian Yang, Rong Lei, Yue Wang, Gansha Liu, Zhiyong Qian
{"title":"Preferential activation of type I interferon-mediated antitumor inflammatory signaling by CuS/MnO<sub>2</sub>/diAMP nanoparticles enhances anti-PD-1 therapy for sporadic colorectal cancer.","authors":"Jinrong Peng, Qian Yang, Rong Lei, Yue Wang, Gansha Liu, Zhiyong Qian","doi":"10.1186/s12951-024-02970-y","DOIUrl":"10.1186/s12951-024-02970-y","url":null,"abstract":"<p><p>Converting the \"cold\" tumor microenvironment (TME) to a \"hot\" milieu has become the prevailing approach for enhancing the response of immune-excluded/immunosuppressed colorectal cancer (CRC) patients to immune checkpoint blockade (ICB) therapy. During this process, inflammation accompanied by different kinds of chemokines/cytokines inevitably occurs. However, some activated inflammatory signals exhibit protumor potency. Therefore, strategies that preferentially activate antitumor inflammatory signaling rather than tumor-promoting signaling need to be developed. Herein, we constructed a STING agonist-loaded CuS/MnO<sub>2</sub> bimetallic nanosystem, termed diAMP-BCM. BCM with an optimized Cu/Mn ratio efficiently promoted the activation of proinflammatory signaling, and in combination with the STING agonist diAMP, diAMP-BCM controllably activated tumoricidal inflammatory signaling in APCs. DiAMP-BCM can efficiently generate ROS and promote the activation of STING, which induces the apoptosis of cancer cells and promotes the recruitment of monocytes while facilitating the polarization of macrophages and maturation of DCs. MC38 and CT26 CRC models were established to evaluate the in vivo antitumor effects of diAMP-BCM. Combined with ICB therapy, diAMP-BCM enables the rebuilding of tumor milieus with efficient tumor growth inhibition and alleviation of T-cell exhaustion, particularly in distal tumors, in sporadic colorectal cancer therapy. This study established a nanoplatform to promote the preferential activation of antitumor inflammatory signaling, rebuild the T-cell repertoire and alleviate T-cell exhaustion to enhance cancer ICB immunotherapy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"699"},"PeriodicalIF":10.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Conformal immunomodulatory hydrogels for the treatment of otitis media. 更正:用于治疗中耳炎的共形免疫调节水凝胶。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-11 DOI: 10.1186/s12951-024-02959-7
Yuefan Jin, Yueyi Shang, Cuiping Wu, Zhengnong Chen, Haibo Shi, Hui Wang, Linpeng Li, Shankai Yin
{"title":"Correction: Conformal immunomodulatory hydrogels for the treatment of otitis media.","authors":"Yuefan Jin, Yueyi Shang, Cuiping Wu, Zhengnong Chen, Haibo Shi, Hui Wang, Linpeng Li, Shankai Yin","doi":"10.1186/s12951-024-02959-7","DOIUrl":"https://doi.org/10.1186/s12951-024-02959-7","url":null,"abstract":"","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"695"},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Exosomal miR-1a-3p derived from glucocorticoid-stimulated M1 macrophages promotes the adipogenic differentiation of BMSCs in glucocorticoid-associated osteonecrosis of the femoral head by targeting Cebpz. 更正:糖皮质激素刺激的 M1 巨噬细胞产生的外泌体 miR-1a-3p 通过靶向 Cebpz 促进糖皮质激素相关性股骨头坏死中 BMSCs 的成脂分化。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-11 DOI: 10.1186/s12951-024-02958-8
Ping Duan, Yong-Le Yu, Yan-Nan Cheng, Meng-Han Nie, Qing Yang, Liang-Hui Xia, Yan-Xiao Ji, Zhen-Yu Pan
{"title":"Correction: Exosomal miR-1a-3p derived from glucocorticoid-stimulated M1 macrophages promotes the adipogenic differentiation of BMSCs in glucocorticoid-associated osteonecrosis of the femoral head by targeting Cebpz.","authors":"Ping Duan, Yong-Le Yu, Yan-Nan Cheng, Meng-Han Nie, Qing Yang, Liang-Hui Xia, Yan-Xiao Ji, Zhen-Yu Pan","doi":"10.1186/s12951-024-02958-8","DOIUrl":"https://doi.org/10.1186/s12951-024-02958-8","url":null,"abstract":"","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"694"},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotic-derived extracellular vesicles alleviate AFB1-induced intestinal injury by modulating the gut microbiota and AHR activation. 源于益生菌的细胞外囊泡通过调节肠道微生物群和 AHR 激活减轻 AFB1 引起的肠道损伤。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-11 DOI: 10.1186/s12951-024-02979-3
Jinyan Li, Mengdie Shi, Yubo Wang, Jinyan Liu, Shuiping Liu, Weili Kang, Xianjiao Liu, Xingxiang Chen, Kehe Huang, Yunhuan Liu
{"title":"Probiotic-derived extracellular vesicles alleviate AFB1-induced intestinal injury by modulating the gut microbiota and AHR activation.","authors":"Jinyan Li, Mengdie Shi, Yubo Wang, Jinyan Liu, Shuiping Liu, Weili Kang, Xianjiao Liu, Xingxiang Chen, Kehe Huang, Yunhuan Liu","doi":"10.1186/s12951-024-02979-3","DOIUrl":"10.1186/s12951-024-02979-3","url":null,"abstract":"<p><strong>Background: </strong>Aflatoxin B1 (AFB1) is a mycotoxin that widely found in the environment and mouldy foods. AFB1 initially targets the intestine, and AFB1-induced intestinal injury cannot be ignored. Lactobacillus amylovorus (LA), a predominant species of Lactobacillus, plays a role in carbohydrate metabolism. Extracellular vesicles (EVs), small lipid membrane vesicles, are widely involved in diverse cellular processes. However, the mechanism by which Lactobacillus amylovorus-QC1H-derived EVs (LA.EVs) protect against AFB1-induced intestinal injury remains unclear.</p><p><strong>Results: </strong>In our study, a new strain named Lactobacillus amylovorus-QC1H (LA-QC1H) was isolated from pig faeces. Then, EVs derived from LA-QC1H were extracted via ultracentrifugation. Our results showed that LA.EVs significantly alleviated AFB1-induced intestinal injury by inhibiting the production of proinflammatory cytokines, decreasing intestinal permeability and increasing the expression of tight junction proteins. Moreover, 16 S rRNA analysis revealed that LA.EVs modulated AFB1-induced gut dysbiosis in mice. However, LA.EVs did not exert beneficial effects in antibiotic-treated mice. LA.EVs treatment increased intestinal levels of indole-3-acetic acid (IAA) and activated intestinal aryl hydrocarbon receptor (AHR)/interleukin-22 (IL-22) signalling in AFB1-exposed mice. Inhibition of intestinal AHR signalling markedly weakened the protective effect of LA.EVs in AFB1-exposed mice.</p><p><strong>Conclusions: </strong>LA.EVs alleviated AFB1-induced intestinal injury by modulating the gut microbiota, activating the intestinal AHR/IL-22 signalling, reducing the inflammatory response and promoting intestinal barrier repair in mice.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"697"},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Living photosynthetic microneedle patches for in situ oxygenation and postsurgical melanoma therapy. 用于原位充氧和黑色素瘤术后治疗的活光合微针贴片。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-11 DOI: 10.1186/s12951-024-02982-8
Jinxuan Jia, Xuhong Guo, Yuwei Wang, Meiling Wu, Xiaocheng Wang, Miaoqing Zhao, Yuanjin Zhao
{"title":"Living photosynthetic microneedle patches for in situ oxygenation and postsurgical melanoma therapy.","authors":"Jinxuan Jia, Xuhong Guo, Yuwei Wang, Meiling Wu, Xiaocheng Wang, Miaoqing Zhao, Yuanjin Zhao","doi":"10.1186/s12951-024-02982-8","DOIUrl":"10.1186/s12951-024-02982-8","url":null,"abstract":"<p><p>Surgical excision remains the principal treatment for melanoma, while tumor recurrence and delayed wound healing often occur due to the residual tumor cells and hypoxic microenvironment in the postoperative skin wounds. Herein, we present a living photosynthetic microneedle (MN) patch (namely MA/CM@MN) loaded with microalgae (MA) and cuttlefish melanin (CM) for postsurgical melanoma therapy and skin wound healing. Benefiting from the oxygenic photosynthesis of the alive MA in the MN base, the MA/CM@MN can generate oxygen under light exposure, thus facilitating skin cell proliferation and protecting cells against hypoxia-induced cell death. In addition, with CM nanoparticles embedded in the MN tips, the MA/CM@MN can be effectively heated up under near-infrared (NIR) irradiation, contributing to a strong tumor killing efficacy on melanoma cells in vitro. Further experiments demonstrate that the NIR-irradiated MA/CM@MN effectively prevents local tumor recurrence and simultaneously promotes the healing of tumor-induced wounds after incomplete tumor resection in melanoma-bearing mice, probably because the MA/CM@MN can inhibit tumor cell proliferation, stimulate tumor cell apoptosis, and mitigate tissue hypoxia in light. These results indicate that the living photosynthetic MN patch offers an effective therapeutic strategy for postoperative cancer therapy and wound healing applications.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"698"},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GelMA hydrogels reinforced by PCL@GelMA nanofibers and bioactive glass induce bone regeneration in critical size cranial defects. 由 PCL@GelMA 纳米纤维和生物活性玻璃增强的 GelMA 水凝胶可诱导临界尺寸颅骨缺损的骨再生。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-11 DOI: 10.1186/s12951-024-02980-w
Chenghao Yu, Jinli Chen, Tianrui Wang, Yawen Wang, Xiaopei Zhang, Zhuoli Zhang, Yuanfei Wang, Tengbo Yu, Tong Wu
{"title":"GelMA hydrogels reinforced by PCL@GelMA nanofibers and bioactive glass induce bone regeneration in critical size cranial defects.","authors":"Chenghao Yu, Jinli Chen, Tianrui Wang, Yawen Wang, Xiaopei Zhang, Zhuoli Zhang, Yuanfei Wang, Tengbo Yu, Tong Wu","doi":"10.1186/s12951-024-02980-w","DOIUrl":"10.1186/s12951-024-02980-w","url":null,"abstract":"<p><strong>Background: </strong>The process of bone healing is complex and involves the participation of osteogenic stem cells, extracellular matrix, and angiogenesis. The advancement of bone regeneration materials provides a promising opportunity to tackle bone defects. This study introduces a composite hydrogel that can be injected and cured using UV light.</p><p><strong>Results: </strong>Hydrogels comprise bioactive glass (BG) and PCL@GelMA coaxial nanofibers. The addition of BG and PCL@GelMA coaxial nanofibers improves the hydrogel's mechanical capabilities (353.22 ± 36.13 kPa) and stability while decreasing its swelling (258.78 ± 17.56%) and hydration (72.07 ± 1.44%) characteristics. This hydrogel composite demonstrates exceptional biocompatibility and angiogenesis, enhances osteogenic development in bone marrow mesenchymal stem cells (BMSCs), and dramatically increases the expression of critical osteogenic markers such as ALP, RUNX2, and OPN. The composite hydrogel significantly improves bone regeneration (25.08 ± 1.08%) in non-healing calvaria defects and promotes the increased expression of both osteogenic marker (OPN) and angiogenic marker (CD31) in vivo. The expression of OPN and CD31 in the composite hydrogel was up to 5 and 1.87 times higher than that of the control group at 12 weeks.</p><p><strong>Conclusion: </strong>We successfully prepared a novel injectable composite hydrogel, and the design of the composite hydrogels shows significant potential for enhancing biocompatibility, angiogenesis, and improving osteogenic and angiogenic marker expression, and has a beneficial effect on producing an optimal microenvironment that promotes bone repair.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"696"},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual targeting and bioresponsive nano-PROTAC induced precise and effective lung cancer therapy. 双靶向和生物响应性纳米PROTAC诱导精确有效的肺癌治疗。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-10 DOI: 10.1186/s12951-024-02967-7
Xiaoling Guan, Xiaowei Xu, Yiwen Tao, Xiaohua Deng, Linlong He, Zhongxiao Lin, Jishuo Chang, Jionghua Huang, Dazhi Zhou, Xiyong Yu, Minyan Wei, Lingmin Zhang
{"title":"Dual targeting and bioresponsive nano-PROTAC induced precise and effective lung cancer therapy.","authors":"Xiaoling Guan, Xiaowei Xu, Yiwen Tao, Xiaohua Deng, Linlong He, Zhongxiao Lin, Jishuo Chang, Jionghua Huang, Dazhi Zhou, Xiyong Yu, Minyan Wei, Lingmin Zhang","doi":"10.1186/s12951-024-02967-7","DOIUrl":"10.1186/s12951-024-02967-7","url":null,"abstract":"<p><p>Epigenetic regulation has emerged as a promising therapeutic strategy for lung cancer treatment, which can facilitate the antitumor responses by modulating epigenetic dysregulation of target proteins in lung cancer. The proteolysis-targeting chimera (PROTAC) reagent, dBET6 shows effective inhibition of bromodomain-containing protein 4 (BRD4) that exerts antitumor efficacy by degrading BRD4 via the ubiquitin-proteasome system. Nevertheless, the low tissue specificity and bioavailability impede its therapeutic effects and clinical translation on lung cancer treatment. Herein, we developed a type of dual targeting and bioresponsive nano-PROTAC (c R GD/L LC membrane/D S-P LGA/d B ET6, named RLDPB), which was constructed by using the pH and glutathione (GSH)-responsive polymer, disulfide bond-linked poly(lactic-co-glycolic acid) (PLGA-S-S-PLGA, DS-PLGA) to load the PROTAC agent dBET6, and further camouflaged with the homotypic LLC cell membranes, followed by the conjugation with cRGD ligand to the surface of the nanoparticles. Notably, RLDPB showed enhanced celluar uptake by lung cancer cells in vitro and accumulation in the tumors via the dual targeting structure including cRGD and LLC membrane. The pH/GSH responsiveness improved the release of dBET6 from the DS-PLGA-based nanoparticles within the cells. RLDPB was demonstrated to facilitate tumor regression by inducing the apoptosis of lung cancer cells with the degradation of BRD4. Thus, RLDPB can be considered a powerful tool to suppress lung cancer, which opens a new avenue to treat lung cancer by PROTAC.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"692"},"PeriodicalIF":10.6,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信