Journal of Nanobiotechnology最新文献

筛选
英文 中文
Succinate exacerbates mastitis in mice via extracellular vesicles derived from the gut microbiota: a potential new mechanism for mastitis. 琥珀酸通过源自肠道微生物群的细胞外囊泡加剧小鼠乳腺炎:乳腺炎的潜在新机制。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-15 DOI: 10.1186/s12951-024-02997-1
Min Qiu, Cong Ye, Xiaotong Zhao, Chenyu Zou, Ruibo Tang, Jiaxin Xie, Yiheng Liu, Yubo Hu, Xiaoyu Hu, Naisheng Zhang, Yunhe Fu, Jun Wang, Caijun Zhao
{"title":"Succinate exacerbates mastitis in mice via extracellular vesicles derived from the gut microbiota: a potential new mechanism for mastitis.","authors":"Min Qiu, Cong Ye, Xiaotong Zhao, Chenyu Zou, Ruibo Tang, Jiaxin Xie, Yiheng Liu, Yubo Hu, Xiaoyu Hu, Naisheng Zhang, Yunhe Fu, Jun Wang, Caijun Zhao","doi":"10.1186/s12951-024-02997-1","DOIUrl":"10.1186/s12951-024-02997-1","url":null,"abstract":"<p><strong>Background: </strong>A high grain diet causes an ecological imbalance in the gut microbiota and serves as an important endogenous trigger of mastitis in dairy cows, but the underlying mechanisms are unclear. Our previous study revealed that subacute rumen acidosis (SARA)-associated mastitis has distinct metabolic profiles in the rumen, especially a significant increase in succinate, but the role of succinate in the pathogenesis of mastitis remains unclear.</p><p><strong>Results: </strong>Succinate treatment exacerbates low-grade endotoxemia-induced mastitis in mice. Specifically, succinate increased the production of gut microbiota-extracellular vehicles (mEVs) containing lipopolysaccharides, which can diffuse across the damaged intestinal barrier into the mammary glands. Administration of mEVs promotes mammary inflammation via activation of the TLR4/NF-κB pathway.</p><p><strong>Conclusions: </strong>Our findings suggest that succinate promotes mastitis through the proliferation of enteric pathogens and mEVs production, suggesting a potential strategy for mastitis intervention on the basis of intestinal metabolic regulation and pathogen inhibition. The role of mEVs in interspecific communication has also been elucidated.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"712"},"PeriodicalIF":10.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine. 患者特定变量在蛋白质电晕形成和纳米医学疗效中的作用。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-15 DOI: 10.1186/s12951-024-02954-y
Ethan P Cisneros, Brinkley A Morse, Ani Savk, Khyati Malik, Nicholas A Peppas, Olivia L Lanier
{"title":"The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine.","authors":"Ethan P Cisneros, Brinkley A Morse, Ani Savk, Khyati Malik, Nicholas A Peppas, Olivia L Lanier","doi":"10.1186/s12951-024-02954-y","DOIUrl":"10.1186/s12951-024-02954-y","url":null,"abstract":"<p><p>Despite their potential, the adoption of nanotechnology in therapeutics remains limited, with only around eighty nanomedicines approved in the past 30 years. This disparity is partly due to the \"one-size-fits-all\" approach in medical design, which often overlooks patient-specific variables such as biological sex, genetic ancestry, disease state, environment, and age that influence nanoparticle behavior. Nanoparticles (NPs) must be transported through systemic, microenvironmental, and cellular barriers that vary across heterogeneous patient populations. Key patient-dependent properties impacting NP delivery include blood flow rates, body fat distribution, reproductive organ vascularization, hormone and protein levels, immune responses, and chromosomal differences. Understanding these variables is crucial for developing effective, patient-specific nanotechnologies. The formation of a protein corona around NPs upon exposure to biological fluids significantly alters NP properties, affecting biodistribution, pharmacokinetics, cytotoxicity, and organ targeting. The dynamics of the protein corona, such as time-dependent composition and formation of soft and hard coronas, depend on NP characteristics and patient-specific serum components. This review highlights the importance of understanding protein corona formation across different patient backgrounds and its implications for NP design, including sex, ancestry, age, environment, and disease state. By exploring these variables, we aim to advance the development of personalized nanomedicine, improving therapeutic efficacy and patient outcomes.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"714"},"PeriodicalIF":10.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De novo strategy of organic semiconducting polymer brushes for NIR-II light-triggered carbon monoxide release to boost deep-tissue cancer phototheranostics. 用于近红外-II 光触发一氧化碳释放的有机半导体聚合物刷的全新战略,以促进深层组织癌症光热疗法。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-14 DOI: 10.1186/s12951-024-02984-6
Caijun Zhu, Mingdian Yu, Jingqi Lv, Fengwei Sun, Achen Qin, Zejing Chen, Xiaoming Hu, Zhen Yang, Zhuting Fang
{"title":"De novo strategy of organic semiconducting polymer brushes for NIR-II light-triggered carbon monoxide release to boost deep-tissue cancer phototheranostics.","authors":"Caijun Zhu, Mingdian Yu, Jingqi Lv, Fengwei Sun, Achen Qin, Zejing Chen, Xiaoming Hu, Zhen Yang, Zhuting Fang","doi":"10.1186/s12951-024-02984-6","DOIUrl":"10.1186/s12951-024-02984-6","url":null,"abstract":"<p><p>The integration of photoacoustic imaging (PAI) and photothermal therapy (PTT) within the second near-infrared (NIR-II) window, offering a combination of high-resolution imaging and precise non-invasive thermal ablation, presents an attractive opportunity for cancer treatment. Despite the significant promise, the development of this noninvasive phototheranostic nanomedicines encounters challenges that stem from tumor thermotolerance and limited therapeutic efficacy. In this contribution, we designed an amphiphilic semiconducting polymer brush (SPB) featuring a thermosensitive carbon monoxide (CO) donor (TDF-CO) for NIR-II PAI-assisted gas-augmented deep-tissue tumor PTT. TDF-CO nanoparticles (NPs) exhibited a powerful photothermal conversion efficiency (43.1%) and the capacity to trigger CO release after NIR-II photoirradiation. Notably, the liberated CO not only acts on mitochondria, leading to mitochondrial dysfunction and promoting cellular apoptosis but also hinders the overexpression of heat shock proteins (HSPs), enhancing the tumor's thermosensitivity to PTT. This dual action accelerates cellular thermal ablation, achieving a gas-augmented synergistic therapeutic effect in cancer treatment. Intravenous administration of TDF-CO NPs in 4T1 tumor-bearing mice demonstrated bright PAI signals and remarkable tumor ablation under 1064 nm laser irradiation, underscoring the potential of CO-mediated photothermal/gas synergistic therapy. We envision this tailor-made multifunctional NIR-II light-triggered SPB provides a feasible approach to amplify the performance of PTT for advancing future cancer phototheranostics.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"708"},"PeriodicalIF":10.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced antiviral defense against begomoviral infection in Nicotiana benthamiana through strategic utilization of fluorescent carbon quantum dots to activate plant immunity. 通过战略性地利用荧光碳量子点激活植物免疫力,增强烟草根瘤病毒感染的抗病毒防御能力。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-14 DOI: 10.1186/s12951-024-02994-4
Tahir Farooq, Muhammad Dilshad Hussain, Yuan Wang, Ali Kamran, Muhammad Umar, Yafei Tang, Zifu He, Xiaoman She
{"title":"Enhanced antiviral defense against begomoviral infection in Nicotiana benthamiana through strategic utilization of fluorescent carbon quantum dots to activate plant immunity.","authors":"Tahir Farooq, Muhammad Dilshad Hussain, Yuan Wang, Ali Kamran, Muhammad Umar, Yafei Tang, Zifu He, Xiaoman She","doi":"10.1186/s12951-024-02994-4","DOIUrl":"10.1186/s12951-024-02994-4","url":null,"abstract":"<p><strong>Background: </strong>Owing to their unique physiochemical properties, low toxicity, antipathogenic effects and tunability, fluorescent carbon quantum dots (CQDs) represent a new generation of carbon-based nanomaterials. Despite the mounting research on the efficacy of CQDs against resilient plant pathogens, their potential ability to mitigate viral pathogens and the underlying molecular mechanism(s) remain understudied. In this study, we optimized the CQDs to maximize their antiviral effects against a highly pathogenic Begomovirus (cotton leaf curl Multan virus, CLCuMuV) and elucidated the mechanistic pathways associated with CQDs-mediated viral inhibition. To fine-tune the CQDs-induced antiviral effects against CLCuMuV and investigate the underlying molecular mechanisms,we used HR-TEM, XRD, FT-IR, XPS, and UV‒Vis spectrophotometry to characterize the CQDs. SPAD and FluorCam were used for physiological and photosynthetic performance analysis. Transcriptome, RT‒qPCR, integrated bioinformatics and molecular biology were employed to investigate gene expression, viral quantification and data validation.</p><p><strong>Results: </strong>The application of fluorescent, hexagonal crystalline, UV-absorptive and water-soluble CQDs (0.01 mg/ml) significantly reduced the CLCuMuV titer and mitigated viral symptoms in N. benthamiana at the early (5 dpi) and late (20 dpi) stages of infection. CQDs significantly increased the morphophysiological properties, relative chlorophyll contents and photosynthetic (Fv/Fm, QY_max, NPQ and Rfd) performance of the CLCuMuV-infected plants. While CLCuMuV infection disrupted plant immunity, the CQDs improved the antiviral defense response by regulating important immunity-related genes involved in endocytosis/necroptosis, Tam3-transposase, the ABC transporter/sphingolipid signaling pathway and serine/threonine protein kinase activities. CQDs potentially triggered TSS and TTS alternative splicing events in CLCuMuV-infected plants.</p><p><strong>Conclusions: </strong>Overall, these findings underscore the antiviral potential of CQDs, their impact on plant resilience, and their ability to modulate gene expression in response to viral stress. This study's molecular insights provide a foundation for further research on nanomaterial applications in plant virology and crop protection, emphasizing the promising role of CQDs in enhancing plant health and combating viral infections.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"707"},"PeriodicalIF":10.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic nanoradiotracers for targeted neutrophil detection in pulmonary arterial hypertension. 用于肺动脉高压中性粒细胞靶向检测的磁性纳米生物载体
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-14 DOI: 10.1186/s12951-024-03000-7
Lucía Fadón-Padilla, Claudia Miranda-Pérez de Alejo, Ana Beatriz Miguel-Coello, Marta Beraza, Desiré Di Silvio, Ainhize Urkola-Arsuaga, María Jesús Sánchez-Guisado, Irati Aiestaran-Zelaia, Laura Fernández-Méndez, Lydia Martinez-Parra, Ermal Ismalaj, Edurne Berra, Susana Carregal-Romero, Jesús Ruíz-Cabello
{"title":"Magnetic nanoradiotracers for targeted neutrophil detection in pulmonary arterial hypertension.","authors":"Lucía Fadón-Padilla, Claudia Miranda-Pérez de Alejo, Ana Beatriz Miguel-Coello, Marta Beraza, Desiré Di Silvio, Ainhize Urkola-Arsuaga, María Jesús Sánchez-Guisado, Irati Aiestaran-Zelaia, Laura Fernández-Méndez, Lydia Martinez-Parra, Ermal Ismalaj, Edurne Berra, Susana Carregal-Romero, Jesús Ruíz-Cabello","doi":"10.1186/s12951-024-03000-7","DOIUrl":"10.1186/s12951-024-03000-7","url":null,"abstract":"<p><strong>Background: </strong>Pulmonary arterial hypertension (PAH) is a severe disease characterized by elevated blood pressure in the pulmonary artery that can ultimately damage the right ventricle of the heart. PAH is pathophysiologically heterogeneous, which makes early diagnosis and treatment difficult. Inflammation is thought to be an important factor in the development and progression of this disease and may explain some of the observed interindividual differences. In the context of both acute and chronic inflammation, neutrophil recruitment to the lung has been suggested as a potential biomarker for studying PAH progression. However, there are currently no specific probes for its non-invasive in vivo detection. The imaging-based gold standard for assessing inflammation is [<sup>18</sup>F] fluorodeoxyglucose (<sup>18</sup>F-FDG), which is not cell specific. This highlights the urgent need for more specific molecular probes to support personalized medicine.</p><p><strong>Methods: </strong>This study investigated the potential of magnetic nanoradiotracers based on ultrasmall iron oxide nanoparticles, functionalized with N-cinnamoyl-F-(D)L-F-(D)L-F peptide, to detect increased neutrophil infiltration in vivo in different PAH animal models via positron emission tomography. These nanoprobes target formyl peptide receptor 1, which is abundantly expressed in the cell membrane of neutrophils. To assess the benefit of these nanoprobes, their biodistribution was first assessed via magnetic resonance imaging and histology. Then, their lung uptake was compared by positron emission tomography with that of <sup>18</sup>F-FDG in two types of PAH animal models with different profiles of inflammation and neutrophil infiltration: monocrotaline and double-hit Sugen-chronic hypoxia PAH rat models.</p><p><strong>Results: </strong>Our targeted magnetic nanoradiotracer detected an increase in pulmonary neutrophil infiltration in both PAH models and distinguished between them, which was not possible with <sup>18</sup>F-FDG PET.</p><p><strong>Conclusions: </strong>This study underscores the importance of targeted imaging in providing an individualized and longitudinal evaluation of heterogeneous and multifactorial diseases such as PAH. The use of targeted multimodal nanoprobes, for magnetic resonance/positron emission tomography imaging has the potential to facilitate the diagnosis and monitoring of diseases, as well as the development of novel therapies.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"709"},"PeriodicalIF":10.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. 为定向输送 RNA 疗法量身定制的脂质纳米粒子在体内的复杂过程:一种按质量进行设计的方法。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-14 DOI: 10.1186/s12951-024-02972-w
Elahe Haghighi, Samira Sadat Abolmaali, Ali Dehshahri, Seyed Ali Mousavi Shaegh, Negar Azarpira, Ali Mohammad Tamaddon
{"title":"Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach.","authors":"Elahe Haghighi, Samira Sadat Abolmaali, Ali Dehshahri, Seyed Ali Mousavi Shaegh, Negar Azarpira, Ali Mohammad Tamaddon","doi":"10.1186/s12951-024-02972-w","DOIUrl":"10.1186/s12951-024-02972-w","url":null,"abstract":"<p><p>RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"710"},"PeriodicalIF":10.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron-based MOF with Catalase-like activity improves the synergistic therapeutic effect of PDT/ferroptosis/starvation therapy by reversing the tumor hypoxic microenvironment. 具有类似过氧化氢酶活性的铁基 MOF 可通过逆转肿瘤缺氧微环境,改善光导光疗/铁色素沉着/饥饿疗法的协同治疗效果。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-14 DOI: 10.1186/s12951-024-02921-7
Yukun Chen, Yuanyuan Chen, Zhenzhi Wang, Lian Yang, Yu Zhang, Zhanxia Zhang, Lijun Jia
{"title":"Iron-based MOF with Catalase-like activity improves the synergistic therapeutic effect of PDT/ferroptosis/starvation therapy by reversing the tumor hypoxic microenvironment.","authors":"Yukun Chen, Yuanyuan Chen, Zhenzhi Wang, Lian Yang, Yu Zhang, Zhanxia Zhang, Lijun Jia","doi":"10.1186/s12951-024-02921-7","DOIUrl":"10.1186/s12951-024-02921-7","url":null,"abstract":"<p><p>Reversing the hypoxic microenvironment of tumors is an important method to enhance the synergistic effect of tumor treatment. In this work, we developed the nanoparticles called Ce6@HGMOF, which consists of a photosensitizer (Ce6), glucose oxidase (GOX), chemotherapy drugs (HCPT) and an iron-based metal-organic framework (MOF). Ce6@HGMOF can consume glucose in tumor cells through \"starvation therapy\", cut off their nutrition source, and produce gluconic acid and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Utilizing this feature, Ce6@HGMOF can produce oxygen through catalase-like catalytic activity, thereby reversing the hypoxic microenvironment of tumors. This strategy of changing the hypoxic environment can help to slow down the growth of tumor blood vessels and improve the drug-resistant microenvironment to some extent. Meanwhile, increasing the supply of oxygen can enhance the effect of photodynamic therapy (PDT) and enhance the oxidative stress damage caused by reactive oxygen species (ROS) in tumor cells. On the other hand, cancer cells usually produce higher levels of glutathione (GSH) to adapt to high oxidative stress and protect themselves. The Ce6@HGMOF we designed can also consume GSH and induce ferroptosis of tumor cells through Fenton reaction with H<sub>2</sub>O<sub>2</sub>, while enhancing the effect of PDT. This innovative synergistic strategy, the combination of PDT/ferroptosis /starvation therapy, can complement each other and enhance each other. It has great potential as a powerful new anti-tumor paradigm in the future.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"705"},"PeriodicalIF":10.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microneedle patches incorporating zinc-doped mesoporous silica nanoparticles loaded with betamethasone dipropionate for psoriasis treatment. 含有掺锌介孔二氧化硅纳米颗粒的微针贴片,内含二丙酸倍他米松,用于治疗牛皮癣。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-14 DOI: 10.1186/s12951-024-02986-4
Jun Li, Zhiguo Yuan, Shuyu Shi, Xingtao Chen, Shuangshuang Yu, Xiaoshu Qi, Tong Deng, Yifei Zhou, Dan Tang, Saihong Xu, Jue Zhang, Yingfu Jiao, Weifeng Yu, Liya Wang, Liqun Yang, Po Gao
{"title":"Microneedle patches incorporating zinc-doped mesoporous silica nanoparticles loaded with betamethasone dipropionate for psoriasis treatment.","authors":"Jun Li, Zhiguo Yuan, Shuyu Shi, Xingtao Chen, Shuangshuang Yu, Xiaoshu Qi, Tong Deng, Yifei Zhou, Dan Tang, Saihong Xu, Jue Zhang, Yingfu Jiao, Weifeng Yu, Liya Wang, Liqun Yang, Po Gao","doi":"10.1186/s12951-024-02986-4","DOIUrl":"10.1186/s12951-024-02986-4","url":null,"abstract":"<p><p>Treating psoriasis presents a major clinical challenge because of the limitations associated with traditional topical glucocorticoid therapy. This study introduced a drug delivery system utilizing zinc-doped mesoporous silica nanoparticle (Zn-MSN) and microneedle (MN), designed to enhance drug utilization for prolonged anti-inflammatory and anti-itch effects. The MN system facilitated the transdermal delivery of betamethasone dipropionate (BD), allowing its slow release. The BD@Zn-MSN-MN system promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype, achieving superior anti-inflammatory effects compared to the clinically used BD cream. Additionally, this study demonstrated that BD@Zn-MSN-MN could further alleviate itching in psoriasis-afflicted mice by decreasing the excitability of the transient receptor potential vanilloid V1 (TRPV1) ion channel positive neurons and reducing the release of calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). These findings offer new insights and effective therapeutic options for the future design of transdermal drug delivery for psoriasis.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"706"},"PeriodicalIF":10.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization. 用AS1411修饰的外泌体-脂质体混合纳米粒子靶向谷氨酰胺合成酶,抑制脉络膜新生血管。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-13 DOI: 10.1186/s12951-024-02943-1
Miaomiao Zhang, Xinyue Lu, Lifu Luo, Jinqiu Dou, Jingbo Zhang, Ge Li, Li Zhao, Fengying Sun
{"title":"Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization.","authors":"Miaomiao Zhang, Xinyue Lu, Lifu Luo, Jinqiu Dou, Jingbo Zhang, Ge Li, Li Zhao, Fengying Sun","doi":"10.1186/s12951-024-02943-1","DOIUrl":"10.1186/s12951-024-02943-1","url":null,"abstract":"<p><p>Choroidal neovascularization (CNV) is a leading cause of visual impairment in wet age-related macular degeneration (wAMD). Recent investigations have validated the potential of reducing glutamine synthetase (GS) to inhibit neovascularization formation, offering prospects for treating various neovascularization-related diseases. In this study, we devised a CRISPR/Cas9 delivery system employing the nucleic acid aptamer AS1411 as a targeting moiety and exosome-liposome hybrid nanoparticles as carriers (CAELN). Exploiting the binding affinity between AS1411 and nucleolin on endothelial cell surfaces, the delivery system was engineered to specifically target the glutamine synthetase gene (GLUL), thereby attenuating GS levels and continuously suppressing CNV. CAELN exhibited spherical and uniform dispersion. In vitro cellular investigations demonstrated gene editing efficiencies of CAELN ranging from 42.05 to 55.02% and its capacity to inhibit neovascularization in HUVEC cells. Moreover, in vivo pharmacodynamic studies conducted in CNV rabbits revealed efficacy of CAELN in restoring the thickness of intra- and extranuclear tissues. The findings suggest that GS is a novel target for the inhibition of pathological CNV, while the development of AS1411-modified exosome-liposome hybrid nanoparticles represents a novel delivery method for the treatment of neovascular-related diseases.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"703"},"PeriodicalIF":10.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel multifunctional nanocomposite hydrogel orchestrates the macrophage reprogramming-osteogenesis crosstalk to boost bone defect repair. 一种新型多功能纳米复合水凝胶可协调巨噬细胞重编程与骨生成的相互关系,从而促进骨缺损修复。
IF 10.6 1区 生物学
Journal of Nanobiotechnology Pub Date : 2024-11-13 DOI: 10.1186/s12951-024-02996-2
Ying Wang, Yedan Chen, Tao Zhou, Jingze Li, Na Zhang, Na Liu, Pinghui Zhou, Yingji Mao
{"title":"A novel multifunctional nanocomposite hydrogel orchestrates the macrophage reprogramming-osteogenesis crosstalk to boost bone defect repair.","authors":"Ying Wang, Yedan Chen, Tao Zhou, Jingze Li, Na Zhang, Na Liu, Pinghui Zhou, Yingji Mao","doi":"10.1186/s12951-024-02996-2","DOIUrl":"10.1186/s12951-024-02996-2","url":null,"abstract":"<p><p>Repairing bone defects is a complex cascade reaction process, as immune system regulation, vascular growth, and osteogenic differentiation are essential. Thus, developing a tissue-engineered biomaterial that caters to the complex healing process of bone regeneration remains a major clinical challenge. In the study, Ca<sup>2+</sup>-TA-rGO (CTAG)/GelMA hydrogels were synthesized by binding Ca<sup>2+</sup> using metal chelation to graphene oxide (GO) nanosheets reduced by tannic acid (TA-rGO) and doping them into gelatin methacrylate (GelMA) hydrogels. TA and rGO exhibited biocompatibility and immunomodulatory properties in this composite, while Ca<sup>2+</sup> promoted bone formation and angiogenesis. This novel nanocomposite hydrogel demonstrated good mechanical properties, degradability, and conductivity, and it could achieve slow Ca<sup>2+</sup> release during bone regeneration. Both in vitro and in vivo experiments revealed that CTAG/GelMA hydrogel modulated macrophage reprogramming and induced a shift from macrophages to healing-promoting M2 macrophages during the inflammatory phase, promoted vascular neovascularization, and facilitated osteoblast differentiation during bone formation. Moreover, CTAG/GelMA hydrogel could downregulate the NF-κB signaling pathway, offering new insights into regulating macrophage reprogramming-osteogenic crosstalk. Conclusively, this novel multifunctional nanocomposite hydrogel provides a multistage treatment for bone and orchestrates macrophage reprogramming-osteogenic crosstalk to boost bone repair.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"702"},"PeriodicalIF":10.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信