Bo Liao, Yu Tian, Mengtong Guan, Wang Han, Weiwei Yi, Kaiting Li, Xiaoliang Yang, Yajuan Niu, Bin Zhang, Peiyu Teng, Dingqun Bai, Liang Kuang, Ying Zhu, Xiaoyu Han
{"title":"来自富血小板血浆的外泌体通过增强滑膜淋巴功能来减轻滑膜炎症。","authors":"Bo Liao, Yu Tian, Mengtong Guan, Wang Han, Weiwei Yi, Kaiting Li, Xiaoliang Yang, Yajuan Niu, Bin Zhang, Peiyu Teng, Dingqun Bai, Liang Kuang, Ying Zhu, Xiaoyu Han","doi":"10.1186/s12951-025-03591-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Synovial inflammation is a pivotal factor in the pathogenesis of osteoarthritis (OA). Platelet-rich plasma-derived Exosomes (PRP-Exos), known for their low immunogenicity, have demonstrated efficacy in modulating chondrocyte function. However, the specific effects and mechanisms of PRP-Exos in synovial inflammation remain unclear. This study aimed to investigate the therapeutic effects and mechanisms of PRP-Exos in synovial inflammation induced by destabilization of the medial meniscus (DMM) in mice.</p><p><strong>Results: </strong>PRP-Exos were extracted via ultracentrifugation. In vivo experiments revealed that PRP-Exos alleviated pain behaviors and synovial inflammation in DMM mice. Furthermore, it was discovered that PRP-Exos enhanced the synovial lymphatic function in DMM mice and promoted lymphangiogenesis. Meanwhile, the therapeutic effect of PRP-Exos on synovial inflammation was attenuated after inhibition of lymphatic function. In vitro studies demonstrated that PRP-Exos enhanced the proliferation, migration, and tube formation ability of lymphatic endothelial cells (LECs), via regulating the PI3K/Akt signaling pathway.</p><p><strong>Conclusions: </strong>This research is the first to reveal that PRP-Exos alleviate pain behaviors and synovial inflammation in DMM mice through activation of the PI3K/Akt signaling pathway in LECs, thereby enhancing synovial lymphatic function and promoting the clearance of inflammatory cells and associated cytokines. These findings offer a novel theoretical foundation for the treatment of synovial inflammation and other inflammation-associated disorders.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"522"},"PeriodicalIF":12.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269200/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exosomes derived from platelet-rich plasma alleviate synovial inflammation by enhancing synovial lymphatic function.\",\"authors\":\"Bo Liao, Yu Tian, Mengtong Guan, Wang Han, Weiwei Yi, Kaiting Li, Xiaoliang Yang, Yajuan Niu, Bin Zhang, Peiyu Teng, Dingqun Bai, Liang Kuang, Ying Zhu, Xiaoyu Han\",\"doi\":\"10.1186/s12951-025-03591-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Synovial inflammation is a pivotal factor in the pathogenesis of osteoarthritis (OA). Platelet-rich plasma-derived Exosomes (PRP-Exos), known for their low immunogenicity, have demonstrated efficacy in modulating chondrocyte function. However, the specific effects and mechanisms of PRP-Exos in synovial inflammation remain unclear. This study aimed to investigate the therapeutic effects and mechanisms of PRP-Exos in synovial inflammation induced by destabilization of the medial meniscus (DMM) in mice.</p><p><strong>Results: </strong>PRP-Exos were extracted via ultracentrifugation. In vivo experiments revealed that PRP-Exos alleviated pain behaviors and synovial inflammation in DMM mice. Furthermore, it was discovered that PRP-Exos enhanced the synovial lymphatic function in DMM mice and promoted lymphangiogenesis. Meanwhile, the therapeutic effect of PRP-Exos on synovial inflammation was attenuated after inhibition of lymphatic function. In vitro studies demonstrated that PRP-Exos enhanced the proliferation, migration, and tube formation ability of lymphatic endothelial cells (LECs), via regulating the PI3K/Akt signaling pathway.</p><p><strong>Conclusions: </strong>This research is the first to reveal that PRP-Exos alleviate pain behaviors and synovial inflammation in DMM mice through activation of the PI3K/Akt signaling pathway in LECs, thereby enhancing synovial lymphatic function and promoting the clearance of inflammatory cells and associated cytokines. These findings offer a novel theoretical foundation for the treatment of synovial inflammation and other inflammation-associated disorders.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"522\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269200/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03591-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03591-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exosomes derived from platelet-rich plasma alleviate synovial inflammation by enhancing synovial lymphatic function.
Background: Synovial inflammation is a pivotal factor in the pathogenesis of osteoarthritis (OA). Platelet-rich plasma-derived Exosomes (PRP-Exos), known for their low immunogenicity, have demonstrated efficacy in modulating chondrocyte function. However, the specific effects and mechanisms of PRP-Exos in synovial inflammation remain unclear. This study aimed to investigate the therapeutic effects and mechanisms of PRP-Exos in synovial inflammation induced by destabilization of the medial meniscus (DMM) in mice.
Results: PRP-Exos were extracted via ultracentrifugation. In vivo experiments revealed that PRP-Exos alleviated pain behaviors and synovial inflammation in DMM mice. Furthermore, it was discovered that PRP-Exos enhanced the synovial lymphatic function in DMM mice and promoted lymphangiogenesis. Meanwhile, the therapeutic effect of PRP-Exos on synovial inflammation was attenuated after inhibition of lymphatic function. In vitro studies demonstrated that PRP-Exos enhanced the proliferation, migration, and tube formation ability of lymphatic endothelial cells (LECs), via regulating the PI3K/Akt signaling pathway.
Conclusions: This research is the first to reveal that PRP-Exos alleviate pain behaviors and synovial inflammation in DMM mice through activation of the PI3K/Akt signaling pathway in LECs, thereby enhancing synovial lymphatic function and promoting the clearance of inflammatory cells and associated cytokines. These findings offer a novel theoretical foundation for the treatment of synovial inflammation and other inflammation-associated disorders.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.