Neutrophil membrane-encapsulated nanosonosensitizer with ultrasound-reinforced ferroptosis in Pseudomonas aeruginosa pneumonia.

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chunhong Du, Shuai Wang, Yijie Cheng, Jie Li, Yufei Zhang, Zhuohao Li, Baolin Zhu, Zhongming Wu, Xinge Zhang, Lingyi Zhou
{"title":"Neutrophil membrane-encapsulated nanosonosensitizer with ultrasound-reinforced ferroptosis in Pseudomonas aeruginosa pneumonia.","authors":"Chunhong Du, Shuai Wang, Yijie Cheng, Jie Li, Yufei Zhang, Zhuohao Li, Baolin Zhu, Zhongming Wu, Xinge Zhang, Lingyi Zhou","doi":"10.1186/s12951-025-03676-5","DOIUrl":null,"url":null,"abstract":"<p><p>Pneumonia caused by Pseudomonas aeruginosa (P. aeruginosa) infection remains a formidable clinical challenge due to persistent biofilm formation and intrinsic antibiotic resistance, exacerbated by bacterial iron homeostasis that stabilizes biofilm architecture and neutralizes oxidative stress. Herein, we present Fe/TNT@NM, a biomimetic nanosonosensitizer activated by ultrasound (US) to dismantle biofilms through dual extracellular-intracellular mechanisms. The nanosonosensitizer features an iron-doped titanate nanotube (Fe/TNT) core encapsulated within a neutrophil membrane (NM). Under US irradiation, Fe/TNT@NM generates sonodynamic reactive oxygen species (ROS) extracellularly and enhances Fe<sup>3+</sup> release. These ions catalyze the Fenton reaction extracellularly to amplify chemodynamic effects and disrupt intracellular iron homeostasis, triggering bacterial ferroptosis. The NM coating enables immune evasion and biofilm-targeted delivery. This ultrasound-reinforced ferroptosis strategy synchronizes extracellular ROS storms with intracellular iron dyshomeostasis, achieving dual-action biofilm dismantling and eradication of drug-resistant P. aeruginosa. In a murine pneumonia model, Fe/TNT@NM suppresses biofilms and mitigates pulmonary injury. By converging biomimetic targeting, sonodynamic-chemodynamic cascades, and ultrasound-augmented ferroptosis, this nanosonosensitizer presents a paradigm-shifting approach to combat refractory biofilm infections and antibiotic resistance.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"607"},"PeriodicalIF":12.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03676-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pneumonia caused by Pseudomonas aeruginosa (P. aeruginosa) infection remains a formidable clinical challenge due to persistent biofilm formation and intrinsic antibiotic resistance, exacerbated by bacterial iron homeostasis that stabilizes biofilm architecture and neutralizes oxidative stress. Herein, we present Fe/TNT@NM, a biomimetic nanosonosensitizer activated by ultrasound (US) to dismantle biofilms through dual extracellular-intracellular mechanisms. The nanosonosensitizer features an iron-doped titanate nanotube (Fe/TNT) core encapsulated within a neutrophil membrane (NM). Under US irradiation, Fe/TNT@NM generates sonodynamic reactive oxygen species (ROS) extracellularly and enhances Fe3+ release. These ions catalyze the Fenton reaction extracellularly to amplify chemodynamic effects and disrupt intracellular iron homeostasis, triggering bacterial ferroptosis. The NM coating enables immune evasion and biofilm-targeted delivery. This ultrasound-reinforced ferroptosis strategy synchronizes extracellular ROS storms with intracellular iron dyshomeostasis, achieving dual-action biofilm dismantling and eradication of drug-resistant P. aeruginosa. In a murine pneumonia model, Fe/TNT@NM suppresses biofilms and mitigates pulmonary injury. By converging biomimetic targeting, sonodynamic-chemodynamic cascades, and ultrasound-augmented ferroptosis, this nanosonosensitizer presents a paradigm-shifting approach to combat refractory biofilm infections and antibiotic resistance.

中性粒细胞膜包裹纳米声纳增敏剂与超声增强铜绿假单胞菌肺炎的铁中毒。
铜绿假单胞菌(P. aeruginosa)感染引起的肺炎仍然是一个巨大的临床挑战,因为持续的生物膜形成和内在的抗生素耐药性,细菌铁稳态稳定生物膜结构和中和氧化应激加剧了这一挑战。在这里,我们提出了Fe/TNT@NM,一种由超声(US)激活的仿生纳米声敏剂,通过细胞外和细胞内双重机制拆除生物膜。纳米声敏剂的特点是铁掺杂钛酸盐纳米管(Fe/TNT)核心包裹在中性粒细胞膜(NM)内。在US照射下,Fe/TNT@NM在细胞外产生声动力活性氧(ROS),促进Fe3+的释放。这些离子在细胞外催化芬顿反应,放大化学动力学效应,破坏细胞内铁稳态,引发细菌铁死亡。纳米涂层使免疫逃避和生物膜靶向递送。这种超声增强的铁死亡策略使细胞外ROS风暴与细胞内铁平衡失调同步,实现了双重作用的生物膜拆除和耐药铜绿假单胞菌的根除。在小鼠肺炎模型中,Fe/TNT@NM抑制生物膜并减轻肺损伤。通过聚合仿生靶向、声动力学-化学动力学级联和超声增强铁凋亡,这种纳米声敏剂提出了一种范式转换的方法来对抗难治性生物膜感染和抗生素耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信