Ukrains’kyi Matematychnyi Zhurnal最新文献

筛选
英文 中文
Ідеальна турбулентність – різновид розподіленого хаосу: короткий нарис 理想湍流是一种分布式混沌:短文
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2024-01-02 DOI: 10.3842/umzh.v75i12.7591
O. Romanenko, A. Akbergenov
{"title":"Ідеальна турбулентність – різновид розподіленого хаосу: короткий нарис","authors":"O. Romanenko, A. Akbergenov","doi":"10.3842/umzh.v75i12.7591","DOIUrl":"https://doi.org/10.3842/umzh.v75i12.7591","url":null,"abstract":"УДК 517.9+519.14\u0000Окреслено ключові положення концепції ідеальної турбулентності, яка пропонує нові сценарії розподіленого хаосу, засновані не на геометро-динамічній складності атрактора, а на надзвичайно складній просторовій структурі елементів атрактора. Ідеальна турбулентність спостерігається в ідеалізованих (що не враховують внутрішній опір) моделях різноманітних процесів, пов’язаних з електромагнітними чи звуковими коливаннями. Така ідеалізація істот-но спрощує аналіз i разом з тим у багатьох випадках надає цілком адекватний опис реальних процесів. ","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"25 34","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139630957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty principles for the q-Hankel–Stockwell transform q-Hankel-Stockwell变换的不确定性原理
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-07-25 DOI: 10.37863/umzh.v75i7.7166
K. Brahim, Hédi Ben Elmonser
{"title":"Uncertainty principles for the \u0000\u0000 q\u0000\u0000-Hankel–Stockwell transform","authors":"K. Brahim, Hédi Ben Elmonser","doi":"10.37863/umzh.v75i7.7166","DOIUrl":"https://doi.org/10.37863/umzh.v75i7.7166","url":null,"abstract":"UDC 517.3\u0000By using the \u0000\u0000 q\u0000\u0000-Jackson integral and some elements of the \u0000\u0000 q\u0000\u0000-harmonic analysis associated with the \u0000\u0000 q\u0000\u0000-Hankel transform, we introduce and study a \u0000\u0000 q\u0000\u0000-analog of the Hankel–Stockwell transform. We give some harmonic analysis properties (Plancherel formula, inversion formula, reproduicing kernel, etc.).  Furthermore, we establish a version of Heisenberg's uncertainty principles. Finally, we study the \u0000\u0000 q\u0000\u0000-Hankel–Stockwell transform on a subset of finite measure.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128059807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotone generalized α -nonexpansive mappings on C ker n - 1 p t A C ker n - 1 p t A <mm 上的单调广义 α 无穷映射
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-07-25 DOI: 10.37863/umzh.v75i7.7188
Emirhan Hacıoğlu, Faik Gürsoy, Abdul Rahim Khan
{"title":"Monotone generalized α -nonexpansive mappings on C ker n - 1 p t A ","authors":"Emirhan Hacıoğlu, Faik Gürsoy, Abdul Rahim Khan","doi":"10.37863/umzh.v75i7.7188","DOIUrl":"https://doi.org/10.37863/umzh.v75i7.7188","url":null,"abstract":"UDC 517.5 We examine the existence of fixed points of generalized α -nonexpansive mappings on C ker n - 1 p t A T p ( 0 ) spaces.  We establish various convergence results for a newly defined algorithm associated with  α -nonexpansive mappings.  We present some illustrative examples to show the efficiency of the proposed algorithm and to support the above-mentioned results.  We also define monotone generalized α -nonexpansive mappings and prove some existence and convergence results for these mappings.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139355446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of some properties of starlike and close-to-convex functions according to subordinate conditions with convexity of a certain analytic function 根据具有一定解析函数的凸性的从属条件确定星形和近凸函数的一些性质
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-07-25 DOI: 10.37863/umzh.v75i7.7214
H. Sahin, Ismet Yildiz
{"title":"Determination of some properties of starlike and close-to-convex functions according to subordinate conditions with convexity of a certain analytic function","authors":"H. Sahin, Ismet Yildiz","doi":"10.37863/umzh.v75i7.7214","DOIUrl":"https://doi.org/10.37863/umzh.v75i7.7214","url":null,"abstract":"UDC 517.5\u0000Investigation of the theory of complex functions  is one of the most fascinating aspects of theory of complex analytic functions of one variable.  It has a huge impact on all areas of mathematics.  Many mathematical concepts are explained when viewed through the theory  of complex functions. Let \u0000\u0000 f\u0000 \u0000 (\u0000 z\u0000 )\u0000 \u0000 ∈\u0000 A\u0000 ,\u0000\u0000 \u0000\u0000 f\u0000 \u0000 (\u0000 z\u0000 )\u0000 \u0000 =\u0000 z\u0000 +\u0000 \u0000 \u0000 ∑\u0000 \u0000 n\u0000 ≥\u0000 2\u0000 \u0000 ∞\u0000 \u0000 \u0000 \u0000 a\u0000 n\u0000 \u0000 \u0000 z\u0000 n\u0000 \u0000 ,\u0000\u0000  be an analytic function in the open unit disc  normalized by \u0000\u0000 f\u0000 \u0000 (\u0000 0\u0000 )\u0000 \u0000 =\u0000 0\u0000\u0000 and \u0000\u0000 f\u0000 '\u0000 \u0000 (\u0000 0\u0000 )\u0000 \u0000 =\u0000 1.\u0000\u0000  For close-to-convex and starlike functions, new and different conditions are obtained by using subordination properties, where \u0000\u0000 r\u0000\u0000 is a positive integer of order \u0000\u0000 \u0000 2\u0000 \u0000 -\u0000 r\u0000 \u0000 \u0000\u0000 \u0000\u0000 \u0000 (\u0000 0\u0000 <\u0000 \u0000 2\u0000 \u0000 -\u0000 r\u0000 \u0000 \u0000 ≤\u0000 \u0000 \u0000 \u0000 1\u0000 2\u0000 \u0000 \u0000 \u0000 )\u0000 \u0000 .\u0000\u0000  By using  subordination, we propose a criterion for \u0000\u0000 f\u0000 \u0000 (\u0000 z\u0000 )\u0000 \u0000 ∈\u0000 \u0000 S\u0000 *\u0000 \u0000 \u0000 [\u0000 \u0000 a\u0000 r\u0000 \u0000 ,\u0000 \u0000 b\u0000 r\u0000 \u0000 ]\u0000 \u0000 .\u0000\u0000 The relations for starlike and close-to-convex functions are investigated under certain conditions according to their subordination properties. At the same time, we analyze the convexity of some analytic functions and study  their regional transformations.  In addition, the properties of convexity for \u0000\u0000 f\u0000 \u0000 (\u0000 z\u0000 )\u0000 \u0000 ∈\u0000 A\u0000\u0000 are examined.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129135224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost everywhere convergence of T means with respect to the Vilenkin system of integrable functions 几乎处处T的收敛意味着对可积函数的维伦金系统的收敛
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-07-25 DOI: 10.37863/umzh.v75i7.7163
N. Nadirashvili
{"title":"Almost everywhere convergence of \u0000\u0000 T\u0000\u0000 means with respect to the Vilenkin system of integrable functions","authors":"N. Nadirashvili","doi":"10.37863/umzh.v75i7.7163","DOIUrl":"https://doi.org/10.37863/umzh.v75i7.7163","url":null,"abstract":"UDC 517.5\u0000We prove and discuss some new weak-type (1,1) inequalities for the maximal operators of  \u0000\u0000 T\u0000\u0000 means with respect to the Vilenkin system generated by monotone coefficients.  We also apply these results to prove that  these \u0000\u0000 T\u0000\u0000 means are  almost everywhere convergent. As applications, we present both some well-known and new results.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132432143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Наближення узагальнених інтегралів Пуассона інтерполяційними тригонометричними поліномами 用插值三角多项式逼近广义泊松积分
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-07-25 DOI: 10.37863/umzh.v75i7.7523
A. Serdyuk, T. Stepaniuk
{"title":"Наближення узагальнених інтегралів Пуассона інтерполяційними тригонометричними поліномами","authors":"A. Serdyuk, T. Stepaniuk","doi":"10.37863/umzh.v75i7.7523","DOIUrl":"https://doi.org/10.37863/umzh.v75i7.7523","url":null,"abstract":"<jats:p>УДК 517.5 Встановлено асимптотично непокращувані інтерполяційні аналоги нерівностей типу Лебега для <mml:math> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>π</mml:mi> </mml:mrow> </mml:math>-періодичних функцій <mml:math> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> які зображуються узагальненими інтегралами Пуассона функцій <mml:math> <mml:mrow> <mml:mi>φ</mml:mi> </mml:mrow> </mml:math> з простору <mml:math> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> <mml:math> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mo>∞</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> В зазначених нерівностях модулі відхилень <mml:math> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo form=\"prefix\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo form=\"postfix\">)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mi>S</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo form=\"prefix\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>;</mml:mo> <mml:mi>x</mml:mi> <mml:mo form=\"postfix\">)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> інтерполяційних поліномів Лагранжа при кожному <mml:math> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>ℝ</mml:mi> </mml:mrow> </mml:math> оцінюються через найкращі наближення <mml:math> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mrow> <mml:mo form=\"prefix\">(</mml:mo> <mml:mi>φ</mml:mi> <mml:mo form=\"postfix\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> функцій <mml:math> <mml:mrow> <mml:mi>φ</mml:mi> </mml:mrow> </mml:math> тригонометричними поліномами в <mml:math> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:math>-метриках. Знайдено також асимптотичні рівності для точних верхніх меж поточкових наближень інтерполяційними тригонометричними поліномами на класах <mml:math> <mml:mrow> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>r</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> </mml:math> узагальнених інтегралів Пуассона функцій, що належать одиничним кулям просторів <mml:math> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> <mml:math> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mo>∞</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> </ja","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139355462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Нормальні властивості чисел у термінах їхнього зображення рядами Перрона
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-07-25 DOI: 10.37863/umzh.v75i7.7503
M. Moroz
{"title":"Нормальні властивості чисел у термінах їхнього зображення рядами Перрона","authors":"M. Moroz","doi":"10.37863/umzh.v75i7.7503","DOIUrl":"https://doi.org/10.37863/umzh.v75i7.7503","url":null,"abstract":"<jats:p>УДК 511.7\u0000Вивчаються зображення чисел рядами Перрона (<mml:math>\u0000<mml:mrow>\u0000\t<mml:mi>P</mml:mi>\u0000</mml:mrow>\u0000</mml:math>-зображення) <mml:math>\u0000<mml:mtable class=\"m-equation-square\" displaystyle=\"true\" style=\"display: block; margin-top: 1.0em; margin-bottom: 2.0em\">\u0000\t<mml:mtr>\u0000\t\t<mml:mtd>\u0000\t\t\t<mml:mspace width=\"6.0em\" />\u0000\t\t</mml:mtd>\u0000\t\t<mml:mtd columnalign=\"left\">\u0000\t\t\t<mml:mrow>\u0000\t\t\t\t<mml:mo form=\"prefix\">(</mml:mo>\u0000\t\t\t\t<mml:mn>0</mml:mn>\u0000\t\t\t\t<mml:mo>;</mml:mo>\u0000\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t<mml:mo form=\"postfix\">]</mml:mo>\u0000\t\t\t</mml:mrow>\u0000\t\t\t<mml:mo>∋</mml:mo>\u0000\t\t\t<mml:mi>x</mml:mi>\u0000\t\t\t<mml:mo>=</mml:mo>\u0000\t\t\t<mml:mstyle displaystyle=\"true\">\u0000\t\t\t\t<mml:munderover>\u0000\t\t\t\t\t<mml:mo>∑</mml:mo>\u0000\t\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t\t\t\t<mml:mo>=</mml:mo>\u0000\t\t\t\t\t\t<mml:mn>0</mml:mn>\u0000\t\t\t\t\t</mml:mrow>\u0000\t\t\t\t\t<mml:mo>∞</mml:mo>\u0000\t\t\t\t</mml:munderover>\u0000\t\t\t</mml:mstyle>\u0000\t\t\t<mml:mfrac linethickness=\"1\">\u0000\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>r</mml:mi>\u0000\t\t\t\t\t\t<mml:mn>0</mml:mn>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>r</mml:mi>\u0000\t\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t<mml:mo>…</mml:mo>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>r</mml:mi>\u0000\t\t\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t</mml:mrow>\u0000\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t\t<mml:mo form=\"prefix\">(</mml:mo>\u0000\t\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t\t<mml:mo>-</mml:mo>\u0000\t\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t\t\t<mml:mo form=\"postfix\">)</mml:mo>\u0000\t\t\t\t\t</mml:mrow>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t<mml:mo>…</mml:mo>\u0000\t\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t\t<mml:mo form=\"prefix\">(</mml:mo>\u0000\t\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t\t<mml:mo>-</mml:mo>\u0000\t\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t\t\t<mml:mo form=\"postfix\">)</mml:mo>\u0000\t\t\t\t\t</mml:mrow>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t\t\t\t\t<mml:mo>+</mml:mo>\u0000\t\t\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t\t\t</mml:mrow>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t</mml:mrow>\u0000\t\t\t</mml:mfrac>\u0000\t\t\t<mml:mo>=</mml:mo>\u0000\t\t\t<mml:msubsup>\u0000\t\t\t\t<mml:mi>Δ</mml:mi>\u0000\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t<mml:msub>\u0000\t\t\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t\t\t<mml:mn>2</mml:mn>\u0000\t\t\t\t\t</mml:msub>\u0000\t\t\t\t\t<mml:mo>…</mml:mo>\u0000\t\t\t\t</mml:mrow>\u0000\t\t\t\t<mml:mi>P</mml:mi>\u0000\t\t\t</mml:msubsup>\u0000\t\t\t<mml:mo>,</mml:mo>\u0000\t\t\t<mml:mspace width=\"1.00em\" />\u0000\t\t\t<mml:mtext>????</mml:mtext>\u0000\t\t\t<mml:mspace width=\"1.00em\" />\u0000\t\t\t<mml:msub>\u0000\t\t\t\t<mml:mi>r</mml:mi>\u0000\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t</mml:msub>\u0000\t\t\t<mml:mo>,</mml:mo>\u0000\t\t\t<mml:msub>\u0000\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t</mml:msub>\u0000\t\t\t<mml:mo>∈</mml:mo>\u0000\t\t\t<mml:mi>ℕ</mml:mi>\u0000\t\t\t<mml:mo>,</mml:mo>\u0000\t\t\t<mml:mspace width=\"1.00em\" />\u0000\t\t\t<mml:msub>\u0000\t\t\t\t<mml:mi>p</mml:mi>\u0000\t\t\t\t<mml:mrow>\u0000\t\t\t\t\t<mml:mi>n</mml:mi>\u0000\t\t\t\t\t<mml:mo>+</mml:mo>\u0000\t\t\t\t\t<mml:mn>1</mml:mn>\u0000\t\t\t\t</mml:mrow>\u0000\t\t\t</mml:msub>\u0000\t\t\t<mml:mo>≥</mml:mo>\u0000\t\t","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115626175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Редакційна сторінка до тематичного номеру
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-07-19 DOI: 10.37863/umzh.v73i10.6926
A. Timokha
{"title":"Редакційна сторінка до тематичного номеру","authors":"A. Timokha","doi":"10.37863/umzh.v73i10.6926","DOIUrl":"https://doi.org/10.37863/umzh.v73i10.6926","url":null,"abstract":"","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121863326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some refinements of the Hermite–Hadamard inequality with the help of weighted integrals 利用加权积分对Hermite-Hadamard不等式的一些改进
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-06-20 DOI: 10.37863/umzh.v75i6.7126
B. Bayraktar, J. E. Nápoles, F. Rabossi
{"title":"Some refinements of the Hermite–Hadamard inequality with the help of weighted integrals","authors":"B. Bayraktar, J. E. Nápoles, F. Rabossi","doi":"10.37863/umzh.v75i6.7126","DOIUrl":"https://doi.org/10.37863/umzh.v75i6.7126","url":null,"abstract":"UDC 517.5\u0000By using the definition of modified  \u0000\u0000 (\u0000 h\u0000 ,\u0000 m\u0000 ,\u0000 s\u0000 )\u0000\u0000-convex functions of the second type, we present various refinements of the classical Hermite–Hadamard inequality obtained  within the framework of weighted integrals. Throughout the paper, we show that various known results available from the literature can be obtained as particular cases of our results.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124265118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the mean value of the generalized Dedekind sum and certain generalized Hardy sums weighted by the Kloosterman sum 关于广义Dedekind和及若干由Kloosterman和加权的广义Hardy和的均值
Ukrains’kyi Matematychnyi Zhurnal Pub Date : 2023-06-20 DOI: 10.37863/umzh.v75i6.7112
M. C. Dağlı, Hamit Sever
{"title":"On the mean value of the generalized Dedekind sum and certain generalized Hardy sums weighted by the Kloosterman sum","authors":"M. C. Dağlı, Hamit Sever","doi":"10.37863/umzh.v75i6.7112","DOIUrl":"https://doi.org/10.37863/umzh.v75i6.7112","url":null,"abstract":"UDC 511\u0000We study a hybrid mean-value problem related to the generalized Dedekind sum, certain generalized Hardy sums, and Kloosterman sum and obtain several meaningful conclusions by means of the analytic method and the properties of the character sum and the Gauss sum.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117062862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信