{"title":"q-Hankel-Stockwell变换的不确定性原理","authors":"K. Brahim, Hédi Ben Elmonser","doi":"10.37863/umzh.v75i7.7166","DOIUrl":null,"url":null,"abstract":"UDC 517.3\nBy using the \n\n q\n\n-Jackson integral and some elements of the \n\n q\n\n-harmonic analysis associated with the \n\n q\n\n-Hankel transform, we introduce and study a \n\n q\n\n-analog of the Hankel–Stockwell transform. We give some harmonic analysis properties (Plancherel formula, inversion formula, reproduicing kernel, etc.). Furthermore, we establish a version of Heisenberg's uncertainty principles. Finally, we study the \n\n q\n\n-Hankel–Stockwell transform on a subset of finite measure.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty principles for the \\n\\n q\\n\\n-Hankel–Stockwell transform\",\"authors\":\"K. Brahim, Hédi Ben Elmonser\",\"doi\":\"10.37863/umzh.v75i7.7166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UDC 517.3\\nBy using the \\n\\n q\\n\\n-Jackson integral and some elements of the \\n\\n q\\n\\n-harmonic analysis associated with the \\n\\n q\\n\\n-Hankel transform, we introduce and study a \\n\\n q\\n\\n-analog of the Hankel–Stockwell transform. We give some harmonic analysis properties (Plancherel formula, inversion formula, reproduicing kernel, etc.). Furthermore, we establish a version of Heisenberg's uncertainty principles. Finally, we study the \\n\\n q\\n\\n-Hankel–Stockwell transform on a subset of finite measure.\",\"PeriodicalId\":163365,\"journal\":{\"name\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37863/umzh.v75i7.7166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/umzh.v75i7.7166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty principles for the
q
-Hankel–Stockwell transform
UDC 517.3
By using the
q
-Jackson integral and some elements of the
q
-harmonic analysis associated with the
q
-Hankel transform, we introduce and study a
q
-analog of the Hankel–Stockwell transform. We give some harmonic analysis properties (Plancherel formula, inversion formula, reproduicing kernel, etc.). Furthermore, we establish a version of Heisenberg's uncertainty principles. Finally, we study the
q
-Hankel–Stockwell transform on a subset of finite measure.