{"title":"利用加权积分对Hermite-Hadamard不等式的一些改进","authors":"B. Bayraktar, J. E. Nápoles, F. Rabossi","doi":"10.37863/umzh.v75i6.7126","DOIUrl":null,"url":null,"abstract":"UDC 517.5\nBy using the definition of modified \n\n (\n h\n ,\n m\n ,\n s\n )\n\n-convex functions of the second type, we present various refinements of the classical Hermite–Hadamard inequality obtained within the framework of weighted integrals. Throughout the paper, we show that various known results available from the literature can be obtained as particular cases of our results.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some refinements of the Hermite–Hadamard inequality with the help of weighted integrals\",\"authors\":\"B. Bayraktar, J. E. Nápoles, F. Rabossi\",\"doi\":\"10.37863/umzh.v75i6.7126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UDC 517.5\\nBy using the definition of modified \\n\\n (\\n h\\n ,\\n m\\n ,\\n s\\n )\\n\\n-convex functions of the second type, we present various refinements of the classical Hermite–Hadamard inequality obtained within the framework of weighted integrals. Throughout the paper, we show that various known results available from the literature can be obtained as particular cases of our results.\",\"PeriodicalId\":163365,\"journal\":{\"name\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37863/umzh.v75i6.7126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/umzh.v75i6.7126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
利用第二类修正的(h, m, s)-凸函数的定义,给出了在加权积分框架内得到的经典Hermite-Hadamard不等式的各种改进。在整个论文中,我们表明,从文献中获得的各种已知结果可以作为我们结果的特殊情况得到。
Some refinements of the Hermite–Hadamard inequality with the help of weighted integrals
UDC 517.5
By using the definition of modified
(
h
,
m
,
s
)
-convex functions of the second type, we present various refinements of the classical Hermite–Hadamard inequality obtained within the framework of weighted integrals. Throughout the paper, we show that various known results available from the literature can be obtained as particular cases of our results.