Guorui Hu, Haonan Bai, Yunpeng Zhao, Ning Chen, Honglin Li, He Mao, Zengpeng Guo, Xiongjie Sheng, Hui Zhang, Hang An, Panhong Zhang, Zhengkuan Zhang, Yinguang Sun, Miaojun Ma
{"title":"Plant–Soil Moisture Positive Feedback Maintaining Alternative Stable States in the Alpine Marsh Ecosystem","authors":"Guorui Hu, Haonan Bai, Yunpeng Zhao, Ning Chen, Honglin Li, He Mao, Zengpeng Guo, Xiongjie Sheng, Hui Zhang, Hang An, Panhong Zhang, Zhengkuan Zhang, Yinguang Sun, Miaojun Ma","doi":"10.1111/ele.14508","DOIUrl":"10.1111/ele.14508","url":null,"abstract":"<div>\u0000 \u0000 <p>A self-reinforcing positive feedback is regarded as a critical process for maintaining alternative stable states (ASS); however, identification of ASS and quantification of positive feedbacks remain elusive in natural ecosystems. Here, we used large-scale field surveys to search for ASS and a positive feedback mechanism under a wide range of habitats on the Tibetan Plateau. Using multiple methods, we proved that three stable states exist that accompany alpine marsh degradation. Positive feedbacks between changing soil moisture and plant community composition forced the ecosystem into another stable state, and the alteration of water use efficiency (WUE) of the component species contributed to this shift. This study provides the first empirical evidence that positive feedback loops maintain ASS in the alpine marsh ecosystem on the Tibetan Plateau. Our research revealed the powerful driving role of plants in transitions between states, which may support the conservation and restoration of global alpine marsh ecosystems.</p>\u0000 </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clayton W. Stocker, Stephanie M. Bamford, Miki Jahn, Geoffrey P. F. Mazué, Amanda K. Pettersen, Daniel Ritchie, Alexander M. Rubin, Daniel W. A. Noble, Frank Seebacher
{"title":"The Effect of Temperature Variability on Biological Responses of Ectothermic Animals—A Meta-Analysis","authors":"Clayton W. Stocker, Stephanie M. Bamford, Miki Jahn, Geoffrey P. F. Mazué, Amanda K. Pettersen, Daniel Ritchie, Alexander M. Rubin, Daniel W. A. Noble, Frank Seebacher","doi":"10.1111/ele.14511","DOIUrl":"10.1111/ele.14511","url":null,"abstract":"<p>Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased ‘gene expression’ in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentin Journé, Michał Bogdziewicz, Benoit Courbaud, Georges Kunstler, Tong Qiu, Marie-Claire Aravena Acuña, Davide Ascoli, Yves Bergeron, Daniel Berveiller, Thomas Boivin, Raul Bonal, Thomas Caignard, Maxime Cailleret, Rafael Calama, J. Julio Camarero, Chia-Hao Chang-Yang, Jerome Chave, Francesco Chianucci, Thomas Curt, Andrea Cutini, Adrian Das, Evangelia Daskalakou, Hendrik Davi, Nicolas Delpierre, Sylvain Delzon, Michael Dietze, Sergio Donoso Calderon, Laurent Dormont, Josep Maria Espelta, William Farfan-Rios, Michael Fenner, Jerry Franklin, Catherine Gehring, Gregory Gilbert, Georg Gratzer, Cathryn H. Greenberg, Arthur Guignabert, Qinfeng Guo, Andrew Hacket-Pain, Arndt Hampe, Qingmin Han, Mick E. Hanley, Janneke Hille Ris Lambers, Jan Holík, Kazuhiko Hoshizaki, Ines Ibanez, Jill F. Johnstone, Johannes M. H. Knops, Richard K. Kobe, Hiroko Kurokawa, Jonathan Lageard, Jalene LaMontagne, Mateusz Ledwon, François Lefèvre, Theodor Leininger, Jean-Marc Limousin, James Lutz, Diana Macias, Anders Mårell, Eliot McIntire, Emily V. Moran, Renzo Motta, Jonathan Myers, Thomas A. Nagel, Shoji Naoe, Mahoko Noguchi, Julian Norghauer, Michio Oguro, Jean-Marc Ourcival, Robert Parmenter, Ian Pearse, Ignacio M. Pérez-Ramos, Łukasz Piechnik, Tomasz Podgórski, John Poulsen, Miranda D. Redmond, Chantal D. Reid, Pavel Samonil, C. Lane Scher, William H. Schlesinger, Barbara Seget, Shubhi Sharma, Mitsue Shibata, Miles Silman, Michael Steele, Nathan Stephenson, Jacob Straub, Samantha Sutton, Jennifer J. Swenson, Margaret Swift, Peter A. Thomas, Maria Uriarte, Giorgio Vacchiano, Amy Whipple, Thomas Whitham, S. Joseph Wright, Kai Zhu, Jess Zimmerman, Magdalena Żywiec, James S. Clark
{"title":"The Relationship Between Maturation Size and Maximum Tree Size From Tropical to Boreal Climates","authors":"Valentin Journé, Michał Bogdziewicz, Benoit Courbaud, Georges Kunstler, Tong Qiu, Marie-Claire Aravena Acuña, Davide Ascoli, Yves Bergeron, Daniel Berveiller, Thomas Boivin, Raul Bonal, Thomas Caignard, Maxime Cailleret, Rafael Calama, J. Julio Camarero, Chia-Hao Chang-Yang, Jerome Chave, Francesco Chianucci, Thomas Curt, Andrea Cutini, Adrian Das, Evangelia Daskalakou, Hendrik Davi, Nicolas Delpierre, Sylvain Delzon, Michael Dietze, Sergio Donoso Calderon, Laurent Dormont, Josep Maria Espelta, William Farfan-Rios, Michael Fenner, Jerry Franklin, Catherine Gehring, Gregory Gilbert, Georg Gratzer, Cathryn H. Greenberg, Arthur Guignabert, Qinfeng Guo, Andrew Hacket-Pain, Arndt Hampe, Qingmin Han, Mick E. Hanley, Janneke Hille Ris Lambers, Jan Holík, Kazuhiko Hoshizaki, Ines Ibanez, Jill F. Johnstone, Johannes M. H. Knops, Richard K. Kobe, Hiroko Kurokawa, Jonathan Lageard, Jalene LaMontagne, Mateusz Ledwon, François Lefèvre, Theodor Leininger, Jean-Marc Limousin, James Lutz, Diana Macias, Anders Mårell, Eliot McIntire, Emily V. Moran, Renzo Motta, Jonathan Myers, Thomas A. Nagel, Shoji Naoe, Mahoko Noguchi, Julian Norghauer, Michio Oguro, Jean-Marc Ourcival, Robert Parmenter, Ian Pearse, Ignacio M. Pérez-Ramos, Łukasz Piechnik, Tomasz Podgórski, John Poulsen, Miranda D. Redmond, Chantal D. Reid, Pavel Samonil, C. Lane Scher, William H. Schlesinger, Barbara Seget, Shubhi Sharma, Mitsue Shibata, Miles Silman, Michael Steele, Nathan Stephenson, Jacob Straub, Samantha Sutton, Jennifer J. Swenson, Margaret Swift, Peter A. Thomas, Maria Uriarte, Giorgio Vacchiano, Amy Whipple, Thomas Whitham, S. Joseph Wright, Kai Zhu, Jess Zimmerman, Magdalena Żywiec, James S. Clark","doi":"10.1111/ele.14500","DOIUrl":"10.1111/ele.14500","url":null,"abstract":"<div>\u0000 \u0000 <p>The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.</p>\u0000 </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coexistence of Competing Plants Under Plant–Soil Feedback","authors":"Athmanathan Senthilnathan, Rafael D'Andrea","doi":"10.1111/ele.14503","DOIUrl":"10.1111/ele.14503","url":null,"abstract":"<div>\u0000 \u0000 <p>Plant–soil feedback (PSF), the reciprocal interaction between plants and their soil environment, is a fundamental ecological process that can influence coexistence and functional structure in plant communities. Current theory establishes that PSF may enhance diversity or lead to exclusion depending on whether soil conditioning disproportionately benefits heterospecific or conspecific individuals. However, a more complete picture of the impact of PSF requires understanding how PSF interacts with competition. To that end, here we propose an integrated mathematical model combining trait-based competition and soil-explicit PSF. Contrary to the current paradigm, we find that soil conditioning that disproportionately favours conspecific individuals can promote coexistence. Additionally, we show that priority effects are common when soil-conditioning species differ in their edaphic preferences. These effects can allow species with large differences in competitive ability to coexist under certain soil conditions. Our results provide testable predictions tying community-level functional patterns in plant communities to PSF and competition.</p>\u0000 </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toby D. Jackson, Paulo Bittencourt, Jakob Poffley, Juliet Anderson, Helene C. Muller-Landau, Pablo A. R. Ramos, Lucy Rowland, David Coomes
{"title":"Wind Shapes the Growth Strategies of Trees in a Tropical Forest","authors":"Toby D. Jackson, Paulo Bittencourt, Jakob Poffley, Juliet Anderson, Helene C. Muller-Landau, Pablo A. R. Ramos, Lucy Rowland, David Coomes","doi":"10.1111/ele.14527","DOIUrl":"10.1111/ele.14527","url":null,"abstract":"<p>In tropical forests, trees strategically balance growth patterns to optimise fitness amid multiple environmental stressors. Wind poses the primary risk to a tree's mechanical stability, prompting developments such as thicker trunks to withstand the bending forces. Therefore, a trade-off in resource allocation exists between diameter growth and vertical growth to compete for light. We explore this trade-off by measuring the relative wind mortality risk for 95 trees in a tropical forest in Panama and testing how it varies with tree size, species and wind exposure. Surprisingly, local wind exposure and tree size had minimal impact on wind mortality risk; instead, species wood density emerged as the crucial factor. Low wood density species exhibited a significantly greater wind mortality risk, suggesting a prioritisation of competition for light over biomechanical stability. Our study highlights the pivotal role of wind safety in shaping the life-history strategy of trees and structuring diverse tropical forests.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michal Bogdziewicz, Igor Chybicki, Jakub Szymkowiak, Bartosz Ulaszewski, Jaroslaw Burczyk, Grażyna Szarek-Łukaszewska, Katarzyna Meyza, Ewa Sztupecka, Mateusz Ledwoń, Łukasz Piechnik, Barbara Seget, Katarzyna Kondrat, Jan Holeksa, Magdalena Żywiec
{"title":"Masting and Efficient Production of Seedlings: Balancing Costs of Variation Through Synchronised Fruiting","authors":"Michal Bogdziewicz, Igor Chybicki, Jakub Szymkowiak, Bartosz Ulaszewski, Jaroslaw Burczyk, Grażyna Szarek-Łukaszewska, Katarzyna Meyza, Ewa Sztupecka, Mateusz Ledwoń, Łukasz Piechnik, Barbara Seget, Katarzyna Kondrat, Jan Holeksa, Magdalena Żywiec","doi":"10.1111/ele.14514","DOIUrl":"10.1111/ele.14514","url":null,"abstract":"<div>\u0000 \u0000 <p>The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage. We conducted a parentage analysis of seedlings and adults in a population of 209 <i>Sorbus aucuparia</i> trees, monitored over 23 years, providing pioneering documentation of the effects of masting on the fitness of individual trees beyond the seed stage. Our results show high costs of interannual variation that can be mitigated by high synchrony and reveal the existence of phenotypes that appear to reap the benefits of masting while avoiding its costs through regular reproduction.</p>\u0000 </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Native Plant Diversity Generates Microbial Legacies That Either Promote or Suppress Non-Natives, Depending on Drought History","authors":"Zhibin Tao, Kaoping Zhang, Ragan M. Callaway, Evan Siemann, Yanjie Liu, Wei Huang","doi":"10.1111/ele.14504","DOIUrl":"10.1111/ele.14504","url":null,"abstract":"<p>Diverse native plant communities resist non-native plants more than species-poor communities, in part through resource competition. The role of soil biota in diversity–invasibility relationships is poorly understood, although non-native plants interact with soil biota during invasions. We tested the responses of non-native plants to soil biota generated by different native plant diversities. We applied well-watered and drought treatments in both conditioning and response phases to explore the effects of ‘historical’ and ‘contemporary’ environmental stresses. When generated in well-watered soils, the microbial legacies from higher native diversity inhibited non-native growth in well-watered conditions. In contrast, when generated in drought-treated soils, the microbial legacies from higher native diversity facilitated non-native growth in well-watered conditions. Contemporary drought eliminated microbial legacy effects on non-native growth. We provide a new understanding of mechanisms behind diversity–invasibility relationships and demonstrate that temporal variation in environmental stress shapes relationships among native plant diversity, soil biota and non-native plants.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ant impacts on global patterns of bird elevational diversity","authors":"Umesh Srinivasan, Kartik Shanker, Trevor D. Price","doi":"10.1111/ele.14497","DOIUrl":"10.1111/ele.14497","url":null,"abstract":"<p>Using data on bird species elevational distributions from the world's mountain ranges, bird diets, and the distribution of the ant genus <i>Oecophylla</i>, we report that global patterns in bird elevational diversity show signals of competition with ants. <i>Oecophylla</i> is an abundant and effective predator of invertebrates, preying on the same species that invertivorous birds feed on. In mountain ranges with <i>Oecophylla</i> present in the foothills, the maximum species richness of invertivorous birds (but not other trophic guilds) occurs, on average, at 960 m, ca. 450 m higher than in mountain ranges without <i>Oecophylla,</i> resulting in a mid-elevation peak in bird species richness. Where <i>Oecophylla</i> is absent, bird species richness for all guilds generally show monotonic declines with increasing elevation. We argue that <i>Oecophylla</i> reduces prey density for invertivorous birds and that low prey abundance reduces invertivorous bird density, which in turn is correlated with lower bird species richness. These findngs suggest that competition between distantly related taxa can set range limits, leading to emergent diversity patterns over large scales.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula Lemos-Costa, Zachary R. Miller, Stefano Allesina
{"title":"Phylogeny structures species' interactions in experimental ecological communities","authors":"Paula Lemos-Costa, Zachary R. Miller, Stefano Allesina","doi":"10.1111/ele.14490","DOIUrl":"https://doi.org/10.1111/ele.14490","url":null,"abstract":"<p>Species' traits and interactions are products of evolutionary history. Despite the long-standing hypothesis that closely related species possess similar traits, and thus experience stronger competition, measuring the effect of evolutionary history on the ecology of natural communities remains challenging. We propose a novel framework to test whether phylogeny influences patterns of coexistence and abundance of species assemblages. In our approach, phylogenetic trees are used to parameterize species' interactions, which in turn determine the abundance of species in a given assemblage. We use likelihoods to score models parameterized with a given phylogeny, and contrast them with models built using random trees, allowing us to test whether phylogenetic information helps to predict species' abundances. Our statistical framework reveals that interactions are indeed structured by phylogeny in a large set of experimental plant communities. Our results confirm that evolutionary history can help predict, and potentially manage or conserve, the structure and function of complex ecological communities.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cumulative adversity and survival in the wild","authors":"Xochitl Ortiz-Ross, Daniel T. Blumstein","doi":"10.1111/ele.14485","DOIUrl":"10.1111/ele.14485","url":null,"abstract":"<p>Protecting populations contending with co-occurring stressors requires a better understanding of how multiple early-life stressors affect the fitness of natural systems. However, the complexity of such research has limited its advancement and prevented us from answering new questions. In human studies, cumulative risk models predict adult health risk based on early adversity exposure. We apply a similar framework in wild yellow-bellied marmots (<i>Marmota flaviventer</i>). We tested cumulative adversity indices (CAIs) across different adversity types and time windows. All CAIs were associated with decreased pup survival and were well supported. Moderate and acute, but not standardized CAIs were associated with decreased lifespan, supporting the cumulative stress hypothesis and the endurance of early adversity. Multivariate models showed that differences in lifespan were driven by weaning date, precipitation, and maternal loss, but they performed poorly compared with CAI models. We highlight the development, utility, and insights of CAI approaches for ecology and conservation.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}