Lauren Petrullo, Quinn Webber, Aura Raulo, Stan Boutin, Jeffrey E. Lane, Andrew G. McAdam, Ben Dantzer
{"title":"独居哺乳动物的社会微生物传播","authors":"Lauren Petrullo, Quinn Webber, Aura Raulo, Stan Boutin, Jeffrey E. Lane, Andrew G. McAdam, Ben Dantzer","doi":"10.1111/ele.70186","DOIUrl":null,"url":null,"abstract":"<p>Microbial transmission is hypothesised to be a major benefit of sociality, facilitated by affiliative behaviours such as grooming and communal nesting in group-living animals. Whether microbial transmission is also present in animals that do not form groups because territoriality limits interactions and prevents group formation remains unknown. Here, we investigate relationships among gut microbiota, population density and dynamic behavioural and spatial measures of territoriality in wild North American red squirrels (<i>Tamiasciurus hudsonicus</i>). Periods of high population density predicted population-level gut microbial homogeneity but individual-level diversification, alongside changes in obligately anaerobic, non-sporulating taxa indicative of social transmission. Microbial alpha-diversity increased with more frequent territorial intrusions, and pairs with stronger intrusion-based social associations had more similar gut microbiota. As some of the first evidence for social microbial transmission in a solitary system, our findings suggest that fluctuations in density and territorial behaviours can homogenise and diversify host microbiomes among otherwise non-interacting animals.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 8","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70186","citationCount":"0","resultStr":"{\"title\":\"Social Microbial Transmission in a Solitary Mammal\",\"authors\":\"Lauren Petrullo, Quinn Webber, Aura Raulo, Stan Boutin, Jeffrey E. Lane, Andrew G. McAdam, Ben Dantzer\",\"doi\":\"10.1111/ele.70186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbial transmission is hypothesised to be a major benefit of sociality, facilitated by affiliative behaviours such as grooming and communal nesting in group-living animals. Whether microbial transmission is also present in animals that do not form groups because territoriality limits interactions and prevents group formation remains unknown. Here, we investigate relationships among gut microbiota, population density and dynamic behavioural and spatial measures of territoriality in wild North American red squirrels (<i>Tamiasciurus hudsonicus</i>). Periods of high population density predicted population-level gut microbial homogeneity but individual-level diversification, alongside changes in obligately anaerobic, non-sporulating taxa indicative of social transmission. Microbial alpha-diversity increased with more frequent territorial intrusions, and pairs with stronger intrusion-based social associations had more similar gut microbiota. As some of the first evidence for social microbial transmission in a solitary system, our findings suggest that fluctuations in density and territorial behaviours can homogenise and diversify host microbiomes among otherwise non-interacting animals.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 8\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70186\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70186\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70186","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Social Microbial Transmission in a Solitary Mammal
Microbial transmission is hypothesised to be a major benefit of sociality, facilitated by affiliative behaviours such as grooming and communal nesting in group-living animals. Whether microbial transmission is also present in animals that do not form groups because territoriality limits interactions and prevents group formation remains unknown. Here, we investigate relationships among gut microbiota, population density and dynamic behavioural and spatial measures of territoriality in wild North American red squirrels (Tamiasciurus hudsonicus). Periods of high population density predicted population-level gut microbial homogeneity but individual-level diversification, alongside changes in obligately anaerobic, non-sporulating taxa indicative of social transmission. Microbial alpha-diversity increased with more frequent territorial intrusions, and pairs with stronger intrusion-based social associations had more similar gut microbiota. As some of the first evidence for social microbial transmission in a solitary system, our findings suggest that fluctuations in density and territorial behaviours can homogenise and diversify host microbiomes among otherwise non-interacting animals.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.