A Causal Inference Framework for Climate Change Attribution in Ecology

IF 7.9 1区 环境科学与生态学 Q1 ECOLOGY
Ecology Letters Pub Date : 2025-08-14 DOI:10.1111/ele.70192
Joan Dudney, Laura E. Dee, Robert Heilmayr, Jarrett Byrnes, Katherine Siegel
{"title":"A Causal Inference Framework for Climate Change Attribution in Ecology","authors":"Joan Dudney,&nbsp;Laura E. Dee,&nbsp;Robert Heilmayr,&nbsp;Jarrett Byrnes,&nbsp;Katherine Siegel","doi":"10.1111/ele.70192","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As climate change increasingly affects biodiversity and ecosystem services, a key challenge in ecology is accurate attribution of these impacts. Though experimental studies have greatly advanced our understanding of climate change effects, experimental results are difficult to generalise to real-world scenarios. To better capture realised impacts, ecologists can use observational data. Disentangling cause and effect using observational data, however, requires careful research design. Here we describe advances in causal inference that can improve climate change attribution in observational settings. Our framework includes five steps: (1) describe the theoretical foundation, (2) choose appropriate observational datasets, (3) estimate the causal relationships of interest, (4) simulate a counterfactual scenario and (5) evaluate results and assumptions using robustness checks. We demonstrate this framework using a pinyon pine case study in North America, and we conclude with a discussion of frontiers in climate change attribution. Our aim is to provide an accessible foundation for applying observational causal inference to estimate climate change effects on ecological systems.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 8","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70192","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As climate change increasingly affects biodiversity and ecosystem services, a key challenge in ecology is accurate attribution of these impacts. Though experimental studies have greatly advanced our understanding of climate change effects, experimental results are difficult to generalise to real-world scenarios. To better capture realised impacts, ecologists can use observational data. Disentangling cause and effect using observational data, however, requires careful research design. Here we describe advances in causal inference that can improve climate change attribution in observational settings. Our framework includes five steps: (1) describe the theoretical foundation, (2) choose appropriate observational datasets, (3) estimate the causal relationships of interest, (4) simulate a counterfactual scenario and (5) evaluate results and assumptions using robustness checks. We demonstrate this framework using a pinyon pine case study in North America, and we conclude with a discussion of frontiers in climate change attribution. Our aim is to provide an accessible foundation for applying observational causal inference to estimate climate change effects on ecological systems.

Abstract Image

生态气候变化归因的因果推理框架
随着气候变化对生物多样性和生态系统服务的影响越来越大,对这些影响的准确归因是生态学面临的一个关键挑战。虽然实验研究极大地促进了我们对气候变化影响的理解,但实验结果很难推广到现实世界。为了更好地捕捉已实现的影响,生态学家可以使用观测数据。然而,利用观测数据解开因果关系需要仔细的研究设计。在这里,我们描述了可以改善观测环境中气候变化归因的因果推理方面的进展。我们的框架包括五个步骤:(1)描述理论基础,(2)选择合适的观测数据集,(3)估计感兴趣的因果关系,(4)模拟反事实场景,(5)使用鲁棒性检查评估结果和假设。我们使用北美的一个小松案例研究来证明这个框架,最后我们讨论了气候变化归因的前沿。我们的目标是为应用观测因果推理来估计气候变化对生态系统的影响提供一个可访问的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信