Journal of insect physiology最新文献

筛选
英文 中文
Nutritional quality regulates postnatal wing morph in pea aphids 营养质量对豌豆蚜出生后翅膀形态的影响
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-10-05 DOI: 10.1016/j.jinsphys.2024.104713
Xi Wang , Zhi-Fu Liu , Ming-Zhen Pan , Zhaozhi Lu , Tong-Xian Liu , He-He Cao
{"title":"Nutritional quality regulates postnatal wing morph in pea aphids","authors":"Xi Wang ,&nbsp;Zhi-Fu Liu ,&nbsp;Ming-Zhen Pan ,&nbsp;Zhaozhi Lu ,&nbsp;Tong-Xian Liu ,&nbsp;He-He Cao","doi":"10.1016/j.jinsphys.2024.104713","DOIUrl":"10.1016/j.jinsphys.2024.104713","url":null,"abstract":"<div><div>Aphids can produce winged or wingless offspring in response to environmental changes. Host nutrition is one of the extensively studied environmental factors influencing the plasticity of wing morphs of aphids. In this study, we found that the pea aphid, <em>Acyrthosiphon pisum</em>, produced a low proportion of winged offspring when fed on plants, but a significantly higher proportion on the artificial diet. Interestingly, when newly born nymphs were transferred back to the artificial diet after feeding on plants for six hours or longer, most nymphs became wingless. These results suggest that the wing morph state of pea aphids can change postnatally, potentially determined by the nutritional quality of their food. Furthermore, aphids feeding on the artificial diet exhibited higher levels of glucose and stronger insulin signaling activity compared with aphids on plants. Conversely, the amino acid levels were lower, and TOR signaling was weaker in aphids fed on the artificial diet. Insulin and the target of rapamycin (TOR) are the primary nutrient-sensing signaling pathways involved in controlling organism growth and have been implicated in regulating aphid wing morph plasticity. We tested whether these nutrient responsive pathways were involved in postanal wing determination of aphids. However, reducing amino acid content in the diet or inhibiting TOR with rapamycin resulted in a decrease of the winged morph, suggesting that the lower amino acid levels or TOR activity was not responsible for the higher proportion of winged morph on the artificial diet. These results suggest that nutritional quality, particularly sugars like sucrose and glucose, may regulate the postnatal wing morph of the pea aphid, likely via the insulin signaling pathway.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"159 ","pages":"Article 104713"},"PeriodicalIF":2.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multigenerational expression of antimicrobial peptides in Aedes aegypti exposed to Metarhizium anisopliae: Is trans-generational immune priming involved? 埃及伊蚊暴露于 Metarhizium anisopliae 后抗菌肽的多代表达:是否涉及跨代免疫引物?
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-09-20 DOI: 10.1016/j.jinsphys.2024.104712
Ricardo de Oliveira Barbosa Bitencourt , Huarrisson Azevedo Santos , Nicolas Salcedo-Porras , Carl Lowenberger , Nathália Alves de Senne , Patrícia Silva Gôlo , Vânia Rita Elias Pinheiro Bittencourt , Isabele da Costa Angelo
{"title":"Multigenerational expression of antimicrobial peptides in Aedes aegypti exposed to Metarhizium anisopliae: Is trans-generational immune priming involved?","authors":"Ricardo de Oliveira Barbosa Bitencourt ,&nbsp;Huarrisson Azevedo Santos ,&nbsp;Nicolas Salcedo-Porras ,&nbsp;Carl Lowenberger ,&nbsp;Nathália Alves de Senne ,&nbsp;Patrícia Silva Gôlo ,&nbsp;Vânia Rita Elias Pinheiro Bittencourt ,&nbsp;Isabele da Costa Angelo","doi":"10.1016/j.jinsphys.2024.104712","DOIUrl":"10.1016/j.jinsphys.2024.104712","url":null,"abstract":"<div><div>We assessed, for the first time, a multigenerational expression of antimicrobial peptides (AMPs) in <em>Aedes aegypti</em> larvae exposed to the entomopathogenic fungus, <em>Metarhizium anisopliae,</em> and correlated it with a possible involvement in <em>trans</em>-generational immune priming (TGIP). <em>Aedes aegypti</em> larvae were first exposed to blastospores or conidia of <em>M. anisopliae</em> CG 489 for 24 and 48 h, and the relative expression of AMPs were measured using quantitative Real-Time PCR. A suspension of conidia was prepared, and two different survival tests were conducted with different larval generations (F0, F1, and F2). In the first bioassay, the survival curves of the three generations were conducted separately and compared with their respective control groups. In the other bioassay, the survival curves of the F0, F1, and F2 generations were compared simultaneously against a naïve group exposed to Tween 80. In both survival tests, the F0 generation was more susceptible to <em>M. anisopliae</em> than subsequent generations. For molecular analyses related to TGIP, F0, F1, and F2 larvae were exposed to conidia, and their expression of AMPs was compared with their control groups and a naïve group. There was no differential expression of <em>cecropin</em>, <em>defensin A</em> or <em>cathepsin B</em> between generations. <em>Lysozyme C</em>, however, showed an increase in expression across generations, suggesting a role in TGIP. These discoveries may help us develop biological insecticides against mosquito larvae based on entomopathogenic fungi.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"159 ","pages":"Article 104712"},"PeriodicalIF":2.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Larval stress affects adult Drosophila behavior and metabolism 幼虫应激影响果蝇成虫的行为和新陈代谢
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-09-19 DOI: 10.1016/j.jinsphys.2024.104709
Evgenia K. Karpova, Margarita A. Bobrovskikh, Elena V. Burdina, Natalya V. Adonyeva, Maksim A. Deryuzhenko, Lyudmila P. Zakharenko, Dmitriy V. Petrovskii, Nataly E. Gruntenko
{"title":"Larval stress affects adult Drosophila behavior and metabolism","authors":"Evgenia K. Karpova,&nbsp;Margarita A. Bobrovskikh,&nbsp;Elena V. Burdina,&nbsp;Natalya V. Adonyeva,&nbsp;Maksim A. Deryuzhenko,&nbsp;Lyudmila P. Zakharenko,&nbsp;Dmitriy V. Petrovskii,&nbsp;Nataly E. Gruntenko","doi":"10.1016/j.jinsphys.2024.104709","DOIUrl":"10.1016/j.jinsphys.2024.104709","url":null,"abstract":"<div><div>In this study, we raised the following question: “Does metamorphosis, being a “reboot” of all systems of the organism, erase the changes that occurred at earlier stages of insect development?” To answer this question, we investigated several behavioral, metabolic and neuroendocrine parameters in <em>Drosophila melanogaster</em> imago that had undergone heat stress at the 3rd larval instar (32 °C, 48 h). We discovered that larval stress negatively affected feeding and locomotor behavior, as well as total lipid content in adult flies. At the same time, these flies demonstrated a considerable increase in carbohydrate content and expression level of insulin/insulin-like growth factor signaling (IIS) pathway genes, <em>dfoxo</em>, <em>dilp6</em> and <em>dInR</em>. The data obtained allow us to conclude that metamorphosis does not erase the effect of stress exposure at early developmental stages and causes dramatic changes in carbohydrate and lipid metabolism as well as locomotor activity of adult insects, which is at least in part due to changes in IIS activity.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"159 ","pages":"Article 104709"},"PeriodicalIF":2.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecdysone promotes gene- and pathogen-specific immune responses to Micrococcus luteus and Bacillus subtilis in Drosophila S2 cells 蜕皮激素促进果蝇 S2 细胞对黄体微球菌和枯草杆菌的基因和病原体特异性免疫反应
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-09-15 DOI: 10.1016/j.jinsphys.2024.104710
Mona Ghassah , Yulia A. Polunina , Victor K. Chmykhalo , Lyubov A. Lebedeva , Yulii V. Shidlovskii , Zaur M. Kachaev
{"title":"Ecdysone promotes gene- and pathogen-specific immune responses to Micrococcus luteus and Bacillus subtilis in Drosophila S2 cells","authors":"Mona Ghassah ,&nbsp;Yulia A. Polunina ,&nbsp;Victor K. Chmykhalo ,&nbsp;Lyubov A. Lebedeva ,&nbsp;Yulii V. Shidlovskii ,&nbsp;Zaur M. Kachaev","doi":"10.1016/j.jinsphys.2024.104710","DOIUrl":"10.1016/j.jinsphys.2024.104710","url":null,"abstract":"<div><p>In <em>Drosophila</em>, the 20-hydroxyecdysone (20E) hormone regulates numerous essential biological processes. Here, we studied the contribution of 20E to the activity of immune signaling pathways and antimicrobial activity using the model <em>Drosophila</em> S2 cells. We found that while 20E alone has no essential effect on this system, pretreating S2 cells with 20E followed by incubation with <em>Escherichia coli</em> or <em>Micrococcus luteus</em> stimulates the induction of a limited number of antimicrobial peptide (AMP) genes, such as <em>Diptericin (Dpt)</em> and <em>Drosomycin (Drs).</em> Contrary to this, cells pretreatment with 20E simulates the activity of numerous <em>Bacillus subtilis</em>-induced AMP genes. Interestingly, it also significantly promotes the expression of components of both the Toll (<em>Dif, Dorsal</em>, etc.) and the IMD pathways (<em>Relish, IMD</em>, etc.) in the presence of <em>Bacillus subtilis</em>. Unexpectedly, simultaneous treatment of S2 cells by 20E and all three bacteria shows another pattern of activity and leads to a suppression of <em>Drosocin (Dro)</em> induction, in particular. Our study reveals that the contribution of 20E to immune genes activity varies for different genes and depends on the mode of 20E interplay with the pathogen and the nature of the pathogen itself.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"159 ","pages":"Article 104710"},"PeriodicalIF":2.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dying of thirst: Osmoregulation by a hawkmoth pollinator in response to variability in ambient humidity and nectar availability 渴死:鹰蛾授粉昆虫对环境湿度和花蜜供应变化的渗透调节作用
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-09-08 DOI: 10.1016/j.jinsphys.2024.104700
Ajinkya Dahake , Steven G. Persaud , Marnesha N. Jones , Joaquín Goyret , Goggy Davidowitz , Robert A. Raguso
{"title":"Dying of thirst: Osmoregulation by a hawkmoth pollinator in response to variability in ambient humidity and nectar availability","authors":"Ajinkya Dahake ,&nbsp;Steven G. Persaud ,&nbsp;Marnesha N. Jones ,&nbsp;Joaquín Goyret ,&nbsp;Goggy Davidowitz ,&nbsp;Robert A. Raguso","doi":"10.1016/j.jinsphys.2024.104700","DOIUrl":"10.1016/j.jinsphys.2024.104700","url":null,"abstract":"<div><p>Climate-induced shifts in flowering phenology can disrupt pollinator-floral resource synchrony, especially in desert ecosystems where rainfall dictates both. However, baseline metrics to gauge pollinator health in the wild amidst rapid climate change are lacking. Our laboratory-based study establishes a baseline for pollinator physiological state by exploring how osmotic conditions influence survivorship in a desert hawkmoth pollinator, <em>Manduca sexta</em>. We sampled hemolymph osmolality from over 1000 lab-grown moths at 20 %, 50 %, and 80 % ambient humidity levels. Starved moths maintained healthy osmolality of 350–400 mmol/kg for 1–3 days after eclosion regardless of ambient humidity, but it sharply rose to 550 mmol/kg after 4–5 days in low and moderate humidity, and after 5 days in high humidity. Starved moths in low humidity conditions perished within 5 days, while those in high humidity survived twice as long. Moths fed synthetic <em>Datura wrightii</em> nectar, synthetic <em>Agave palmeri</em> nectar, or water, maintained osmolality within a healthy range of 350–400mmol/kg. The same was true for moths fed authentic floral nectars from <em>Datura</em> and <em>Agave</em> plants, although moths consumed more synthetic than authentic nectars, possibly due to non-sugar constituents. Simulating a 4-day mismatch between pollinator emergence and nectar availability, a single nectar meal osmotically rescued moths under dry ambient conditions. Our findings highlight hemolymph osmolality as a rapid and accurate biomarker distinguishing dehydrated from hydrated states in insect pollinators.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"159 ","pages":"Article 104700"},"PeriodicalIF":2.3,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002219102400088X/pdfft?md5=09eca8269cc5e561136d652a517b30ab&pid=1-s2.0-S002219102400088X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster 膳食钾和低温驯化可增加黑腹果蝇的耐寒能力
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-09-07 DOI: 10.1016/j.jinsphys.2024.104701
Bassam Helou , Marshall W. Ritchie , Heath A. MacMillan , Mads Kuhlmann Andersen
{"title":"Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster","authors":"Bassam Helou ,&nbsp;Marshall W. Ritchie ,&nbsp;Heath A. MacMillan ,&nbsp;Mads Kuhlmann Andersen","doi":"10.1016/j.jinsphys.2024.104701","DOIUrl":"10.1016/j.jinsphys.2024.104701","url":null,"abstract":"<div><p>In the cold, chill susceptible insects lose the ability to regulate ionic and osmotic gradients. This leads to hemolymph hyperkalemia that drives a debilitating loss of cell membrane polarization, triggering cell death pathways and causing organismal injury. Biotic and abiotic factors can modulate insect cold tolerance by impacting the ability to mitigate or prevent this cascade of events. In the present study, we test the combined and isolated effects of dietary manipulations and thermal acclimation on cold tolerance in fruit flies. Specifically, we acclimated adult <em>Drosophila melanogaster</em> to 15 or 25 °C and fed them either a K<sup>+</sup>-loaded diet or a control diet. We then tested the ability of these flies to recover from and survive a cold exposure, as well as their capacity to protect transmembrane K<sup>+</sup> gradients, and intracellular Na<sup>+</sup> concentration. As predicted, cold-exposed flies experienced hemolymph hyperkalemia and cold-acclimated flies had improved cold tolerance due to an improved maintenance of the hemolymph K<sup>+</sup> concentration at low temperature. Feeding on a high-K<sup>+</sup> diet improved cold tolerance additively, but paradoxically reduced the ability to maintain extracellular K<sup>+</sup> concentrations. Cold-acclimation and K<sup>+</sup>-feeding additively increased the intracellular K<sup>+</sup> concentration, aiding in maintenance of the transmembrane K<sup>+</sup> gradient during cold exposure despite cold-induced hemolymph hyperkalemia. There was no effect of acclimation or diet on intracellular Na<sup>+</sup> concentration. These findings suggest intracellular K<sup>+</sup> loading and reduced muscle membrane K<sup>+</sup> sensitivity as mechanisms through which cold-acclimated and K<sup>+</sup>-fed flies are able to tolerate hemolymph hyperkalemia.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"159 ","pages":"Article 104701"},"PeriodicalIF":2.3,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022191024000891/pdfft?md5=7374511cd6a1aa6a5bada385330ef47c&pid=1-s2.0-S0022191024000891-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Male condition and seminal fluid affect female host-marking behavior in the Mexican fruit fly 雄性条件和精液对墨西哥果蝇雌性宿主标记行为的影响
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-08-26 DOI: 10.1016/j.jinsphys.2024.104699
Guadalupe Córdova-García , Ana Salazar-Suárez, Perla Paloma Cabrera-Ferral, Francisco Díaz-Fleischer , Maurilio López-Ortega , Diana Pérez-Staples
{"title":"Male condition and seminal fluid affect female host-marking behavior in the Mexican fruit fly","authors":"Guadalupe Córdova-García ,&nbsp;Ana Salazar-Suárez,&nbsp;Perla Paloma Cabrera-Ferral,&nbsp;Francisco Díaz-Fleischer ,&nbsp;Maurilio López-Ortega ,&nbsp;Diana Pérez-Staples","doi":"10.1016/j.jinsphys.2024.104699","DOIUrl":"10.1016/j.jinsphys.2024.104699","url":null,"abstract":"<div><p>Mating and the transfer of seminal fluid components including male accessory glands (MAGs) proteins can affect oviposition behavior in insects. After oviposition, some species of fruit flies deposit a host-marking pheromone (HMP) on the fruit that discourages oviposition by other females of the same or different species or genus and reduces competition between larvae. However, we know very little about how mating, receiving seminal fluid, or male condition can affect female host marking behavior. Here, we tested how the physiological state of females (mated or unmated), the receipt of seminal fluid, and the condition of the male (wild or sterile) affect oviposition and host-marking behavior (HMB) in <em>Anastrepha ludens</em> (Diptera: Tephritidae). We also determined the efficiency of the host-marking pheromone from mated or unmated females in deterring oviposition. In a further examination of how seminal fluid may be affecting HMB we assessed if there were differences in the size of wild or sterile MAGs and the protein quantity transferred during mating. Our results indicate that receiving seminal fluid increased egg laying and increased time invested in host-marking (HM). Unmated females laid fewer eggs than mated females but invested the same amount of time in depositing host-marking pheromone, which had similar effectiveness in deterring oviposition as that of mated females. Females that mated with sterile males laid the same number of eggs as females that mated with wild males but spent less time depositing host-marking pheromone, which suggests that females detect the condition of the male and invest less in marking hosts. Finally, sterile males had larger accessory glands and transferred more MAGs proteins during mating compared to wild males. Seminal proteins could be manipulating HM behavior and female investment into their current reproductive effort. We are only beginning to understand how male condition and seminal fluid can affect female physiology and maternal investment in HMP.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"158 ","pages":"Article 104699"},"PeriodicalIF":2.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rnai-based functional analysis of bursicon genes related to cuticle pigmentation in a ladybird beetle 基于 Rnai 的瓢虫角质层色素相关囊状基因功能分析
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-08-22 DOI: 10.1016/j.jinsphys.2024.104696
Lan-Lan Liao, Wen-Ze Li, Lin Jin, Guo-Qing Li
{"title":"Rnai-based functional analysis of bursicon genes related to cuticle pigmentation in a ladybird beetle","authors":"Lan-Lan Liao,&nbsp;Wen-Ze Li,&nbsp;Lin Jin,&nbsp;Guo-Qing Li","doi":"10.1016/j.jinsphys.2024.104696","DOIUrl":"10.1016/j.jinsphys.2024.104696","url":null,"abstract":"<div><p>In arthropods, the binding of a bursicon (encoded by <em>burs</em> and <em>pburs</em>) heterodimer or homodimer to a leucine-rich repeat-containing G protein coupled receptor LGR2 (encoded by <em>rk</em>) can activate many physiological processes, especially cuticle pigmentation during insect ecdysis. In the current paper, we intended to ascertain whether bursicon signaling mediates body coloration in the 28-spotted larger potato ladybird, <em>Henosepilachna vigintioctomaculata</em>, and if so, by which way bursicon signal governs the pigmentation. The high expression of <em>Hvburs</em>, <em>Hvpburs</em> and <em>Hvrk</em> occurred in the young larvae, pupae and adults, especially in the head and ventral nerve cord. RNA interference (RNAi) aided knockdown of <em>Hvburs</em>, <em>Hvpburs</em> or <em>Hvrk</em> in the prepupae caused similar phenotypic defects. The pigmentation of the resultant adults was affected, with significantly reduced dark areas on the sternums. Moreover, the accumulated mRNA levels of two sclerotin biosynthesis genes, aspartate 1-decarboxylase gene <em>Hvadc</em> and N-β-alanyldopamine synthase gene <em>Hvebony</em>, were significantly increased in the <em>Hvburs</em>, <em>Hvpburs</em> or <em>Hvrk</em> RNAi beetles. Furthermore, depletion of either <em>Hvadc</em> or <em>Hvebony</em> could completely rescue the impaired coloration on the sternums of <em>Hvpburs</em> RNAi adult. Our results supported that bursicon heterodimer-mediated signal regulate cuticle pigmentation. The bursicon signaling may tune the ratio of melanins (dark/black, brown) to sclerotins (light yellow, colorless) exerting its regulative role in the pigmentation of <em>H. vigintioctomaculata</em> sternums.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"158 ","pages":"Article 104696"},"PeriodicalIF":2.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastic exposure reduced the defecation rate, altered digestive enzyme activities, and caused histological and ultracellular changes in the midgut tissues of the ground beetle (Blaps polychresta) 接触微塑料降低了地鳖虫(Blaps polychresta)的排便率,改变了消化酶活性,并导致中肠组织发生组织学和超细胞变化。
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-08-17 DOI: 10.1016/j.jinsphys.2024.104697
Samar El kholy , Taiwo Ayorinde , Christie M. Sayes , Yahya Al Naggar
{"title":"Microplastic exposure reduced the defecation rate, altered digestive enzyme activities, and caused histological and ultracellular changes in the midgut tissues of the ground beetle (Blaps polychresta)","authors":"Samar El kholy ,&nbsp;Taiwo Ayorinde ,&nbsp;Christie M. Sayes ,&nbsp;Yahya Al Naggar","doi":"10.1016/j.jinsphys.2024.104697","DOIUrl":"10.1016/j.jinsphys.2024.104697","url":null,"abstract":"<div><p>Concerns about microplastic (MP) pollution in terrestrial systems are increasing. It is believed that the overall amount of MPs in the terrestrial system could be 4–23 times higher than that in the ocean. Agricultural ecosystems are among the most polluted areas with MPs. Terrestrial organisms such as ground beetles, will be more vulnerable to MPs in various agricultural soil types because they are common in garden and agricultural areas. Therefore, this work aims to assess for the first time the potential adverse effects of chronic exposure for 30 days of ground beetles to a field-realistic concentration of 2 % (w/w) of three different irregularly shaped MPs polymers: Polystyrene (PS), polyethylene terephthalate (PET), and polyamide 6 (PA; <em>i.e.,</em> nylon 6) on their health. The results showed no effect on beetle survival; nevertheless, there was a decrease in beetle defecation rate, particularly in beetles exposed to PS-MPs, and a change in the activity of midgut digestive enzymes. The effects on digestive enzymes (amylase, protease, lipase, and α-glucosidase) were polymer and enzyme specific. Furthermore, histological and cytological studies demonstrated the decomposition of the midgut peritrophic membrane, as well as abnormally shaped nuclei, vacuolation, disordered microvilli, necrosis of goblet and columnar cells, and necrosis of mitochondria in midgut cells. Given the importance of ground beetles as predators in most agricultural and garden settings, the reported adverse impacts of MPs on their health may impact their existence and ecological functions.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"158 ","pages":"Article 104697"},"PeriodicalIF":2.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of a Clark electrode device as a respirometer for small insects: A convincing test on ants allowing to detect discontinuous gas exchange 利用克拉克电极装置作为小型昆虫的呼吸计:在蚂蚁身上进行的令人信服的测试,可以检测到不连续的呼吸。
IF 2.3 2区 农林科学
Journal of insect physiology Pub Date : 2024-08-17 DOI: 10.1016/j.jinsphys.2024.104698
Maïly Kervella , Céline Cansell , François Criscuolo , Frederic Bouillaud
{"title":"Utilization of a Clark electrode device as a respirometer for small insects: A convincing test on ants allowing to detect discontinuous gas exchange","authors":"Maïly Kervella ,&nbsp;Céline Cansell ,&nbsp;François Criscuolo ,&nbsp;Frederic Bouillaud","doi":"10.1016/j.jinsphys.2024.104698","DOIUrl":"10.1016/j.jinsphys.2024.104698","url":null,"abstract":"<div><p>Respirometry provides a direct measure of an organism’s O<sub>2</sub> consumption rate (VO<sub>2</sub>), which is a significant component of its metabolic rate (energy expenditure). Amongst ants, variations in lifespan between different social castes (such as workers and queens) can be substantial, varying depending on the species. As metabolic rate is higher in short-living species, we aimed to determine how VO<sub>2</sub> and longevity may have coevolved within ant casts. Measuring VO<sub>2</sub> in such tiny animal models can be challenging, and as a first methodological step, we validate the use of a Clark electrode, initially designed for measuring mitochondrial respiration control pathways, for assessing VO<sub>2</sub> in ants within a sealed chamber. This was done by comparing it with stop-flow VO<sub>2</sub> and CO<sub>2</sub> production, using a traditional indirect calorimetry device. The global aim is to provide a reliable protocol to conduct accurate comparisons of metabolic rates within and among ant species. As expected, using the Clark electrode entails high time resolution and revealed that queens and workers exhibited discontinuous gas exchange, with episodes of apnea lasting up to 20 min.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"158 ","pages":"Article 104698"},"PeriodicalIF":2.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信