{"title":"AaHR78 mediates the effects of 20E on growth and reproduction in Aedes aegypti","authors":"Yaneng Huang , Xue Gong , Lingling Yu , Yanan Yin , Yuqi Huang , Mingtian Jiang , Qian Han , Chenghong Liao","doi":"10.1016/j.jinsphys.2025.104790","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear receptors are critical components of various physiological pathways, significantly influencing insect signal transduction. Although the role of HR78 in tracheal and nervous system development has been well-studied, its function during transformation and reproduction remains underexplored. This study characterizes the nuclear receptor gene <em>AaHR78</em> in <em>Aedes aegypti</em>, which possesses distinct sequence features, including a DNA-binding domain and a ligand-binding domain. <em>AaHR78</em> spans 3117 base pairs with an open reading frame (ORF) of 1892 base pairs. Temporal and spatial transcription abundance analysis revealed that <em>AaHR78</em> is predominantly expressed during the pupal stage, peaking at the white pupal phase. Notable transcription abundance levels were detected in the ovaries, thoraxes, and heads of female mosquitoes. Using RNA interference (RNAi) in <em>Ae. aegypti</em> larvae and adults, we investigated the functional role of <em>AaHR78</em>. Larval interference experiments demonstrated that <em>AaHR78</em> knockdown disrupted genes associated with the 20-hydroxyecdysone (20E) synthesis and signaling pathways, resulting in elevated 20E levels and accelerated pupation. In adult females, <em>AaHR78</em> knockdown impaired ovarian development by reducing systemic 20E levels, subsequently decreasing egg production. Furthermore, our results confirm that 20E can directly induce <em>AaHR78</em> transcription abundance. In conclusion, <em>AaHR78</em> plays a pivotal role in mediating the effects of 20E on larval development and adult reproduction in <em>Ae. aegypti</em>. These findings provide valuable insights into the <em>AaHR78</em>-20E regulatory network and its potential as a molecular target for mosquito control strategies.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"162 ","pages":"Article 104790"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191025000447","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear receptors are critical components of various physiological pathways, significantly influencing insect signal transduction. Although the role of HR78 in tracheal and nervous system development has been well-studied, its function during transformation and reproduction remains underexplored. This study characterizes the nuclear receptor gene AaHR78 in Aedes aegypti, which possesses distinct sequence features, including a DNA-binding domain and a ligand-binding domain. AaHR78 spans 3117 base pairs with an open reading frame (ORF) of 1892 base pairs. Temporal and spatial transcription abundance analysis revealed that AaHR78 is predominantly expressed during the pupal stage, peaking at the white pupal phase. Notable transcription abundance levels were detected in the ovaries, thoraxes, and heads of female mosquitoes. Using RNA interference (RNAi) in Ae. aegypti larvae and adults, we investigated the functional role of AaHR78. Larval interference experiments demonstrated that AaHR78 knockdown disrupted genes associated with the 20-hydroxyecdysone (20E) synthesis and signaling pathways, resulting in elevated 20E levels and accelerated pupation. In adult females, AaHR78 knockdown impaired ovarian development by reducing systemic 20E levels, subsequently decreasing egg production. Furthermore, our results confirm that 20E can directly induce AaHR78 transcription abundance. In conclusion, AaHR78 plays a pivotal role in mediating the effects of 20E on larval development and adult reproduction in Ae. aegypti. These findings provide valuable insights into the AaHR78-20E regulatory network and its potential as a molecular target for mosquito control strategies.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.