Haolin Li , Xue Kong , Dongyu Yang , Yan Fang , Han Yang , Wenjie Zhang , Jiguang Wei , Xuesheng Li
{"title":"Differential regulation of reproduction and molting by juvenile hormone in aphids","authors":"Haolin Li , Xue Kong , Dongyu Yang , Yan Fang , Han Yang , Wenjie Zhang , Jiguang Wei , Xuesheng Li","doi":"10.1016/j.jinsphys.2025.104791","DOIUrl":null,"url":null,"abstract":"<div><div>Insects rely on juvenile hormones to regulate various physiological processes, including reproduction and molting; currently eight forms of this hormone are known. In most insects, only JH Ⅲ is synthesized. Meanwhile, aphids produce JH Ⅲ and JH Ⅲ skipped bisepoxide (JHSB<sub>3</sub>). However, it remains unclear whether these compounds play distinct roles in functional regulation. In this study, we demonstrated that the tested concentrations of JH Ⅲ effectively increased the number of aphid offspring, whereas high concentrations of JHSB<sub>3</sub> affected the molting process. Drip experiments showed that 10 mg/L JH Ⅲ increased the number of offspring from 39.38 ± 8.03 to 56.50 ± 13.17, whereas 10 mg/L JHSB<sub>3</sub> resulted in a 60.00 %± 5.77 % failure rate in molting before adulthood. Transcriptomic analysis also revealed that in the JH Ⅲ treatment group, 9 genes and 7 pathways associated with reproduction were expressed, but not genes or pathways associated with molting. In addition, 16 genes and 9 pathways associated with molting as well as 5 genes and 4 pathways associated with reproduction were identified in the JHSB<sub>3</sub> treatment group. JH Ⅲ promotes reproduction in aphids by enhancing <em>Vg</em> expression, whereas JHSB<sub>3</sub> affects molting by inhibiting the synthesis of molting hormone–related enzymes. The results indicate that JH Ⅲ and JHSB<sub>3</sub> exhibit diverse functions in <em>Aphis craccivora</em>. The findings have significant implications for further studies on the physiological functions of different JHs.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"162 ","pages":"Article 104791"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191025000459","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insects rely on juvenile hormones to regulate various physiological processes, including reproduction and molting; currently eight forms of this hormone are known. In most insects, only JH Ⅲ is synthesized. Meanwhile, aphids produce JH Ⅲ and JH Ⅲ skipped bisepoxide (JHSB3). However, it remains unclear whether these compounds play distinct roles in functional regulation. In this study, we demonstrated that the tested concentrations of JH Ⅲ effectively increased the number of aphid offspring, whereas high concentrations of JHSB3 affected the molting process. Drip experiments showed that 10 mg/L JH Ⅲ increased the number of offspring from 39.38 ± 8.03 to 56.50 ± 13.17, whereas 10 mg/L JHSB3 resulted in a 60.00 %± 5.77 % failure rate in molting before adulthood. Transcriptomic analysis also revealed that in the JH Ⅲ treatment group, 9 genes and 7 pathways associated with reproduction were expressed, but not genes or pathways associated with molting. In addition, 16 genes and 9 pathways associated with molting as well as 5 genes and 4 pathways associated with reproduction were identified in the JHSB3 treatment group. JH Ⅲ promotes reproduction in aphids by enhancing Vg expression, whereas JHSB3 affects molting by inhibiting the synthesis of molting hormone–related enzymes. The results indicate that JH Ⅲ and JHSB3 exhibit diverse functions in Aphis craccivora. The findings have significant implications for further studies on the physiological functions of different JHs.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.